The covalent attachment of ubiquitin to proteins plays a fundamental role in the regulation of cellular function through biological events involving abiotic or biotic stress responses, immune responses, and apoptosis. Here, we characterize the biological function of the Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) in dehydration response. AtRZF1 was significantly reduced by drought stress. The atrzf1 mutant was less sensitive to osmotic stress than the wild-type during early seedling development, whereas transgenic plants overexpressing AtRZF1 were hypersensitive, indicating that AtRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the AtRZF1 gene was very significantly influential in drought sensitive parameters including proline content, water loss, membrane ion leakage and the expression of dehydration stress-related genes. AtRZF1 is a functional E3 ubiquitin ligase, and its conserved C3H2C3-type RING domain is likely important for the biological function of AtRZF1 in drought response. Together, these results suggest that the E3 ligase AtRZF1 is an important regulator of water deficit stress during early seedling development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2012.12.007 | DOI Listing |
Appl Environ Microbiol
January 2025
Tohoku Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Morioka, Japan.
Unlabelled: , a white-colored truffle that is endemic to Japan, is promising for culinary purposes due to its unique aroma. We were able to cultivate in plantations of inoculated seedlings for the first time. Ascocarps were found after 43 months at one site and after 61 months at another.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.
Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
Freezing temperatures impose significant constraints on plant growth and productivity. While cold tolerance mechanisms have been extensively studied in model species, the molecular basis of freezing tolerance in naturally adapted plants remains underexplored. , an alpine plant with a strong freezing tolerance, provides a valuable model for investigating these adaptive mechanisms.
View Article and Find Full Text PDFSci Rep
January 2025
U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.
Purpose: Cowpea ( (L.) Walp.) is a major legume crops for human consumption and livestock feed in tropical regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!