Thin film deposition of metal oxides in resistance switching devices: electrode material dependence of resistance switching in manganite films.

Nanoscale Res Lett

Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Published: February 2013

The electric-pulse-induced resistance switching in layered structures composed of polycrystalline Pr1-xCaxMnO3 (PCMO) sandwiched between Pt bottom electrode and top electrodes of various metals (metal/PCMO/Pt) was studied by direct current current-voltage (I-V) measurements and alternating current impedance spectroscopy. The I-V characteristics showed nonlinear, asymmetric, and hysteretic behavior in PCMO-based devices with top electrode of Al, Ni, and Ag, while no hysteretic behavior was observed in Au/PCMO/Pt devices. The PCMO-based devices with hysteretic I-V curves exhibited an electric-pulse-induced resistance switching between high and low resistance states. Impedance spectroscopy was employed to study the origin of the resistance switching. From comparison of the impedance spectra between the high and low resistance states, the resistance switching in the PCMO-based devices was mainly due to the resistance change in the interface between the film and the electrode. The electronic properties of the devices showed stronger correlation with the oxidation Gibbs free energy than with the work function of the electrode metal, which suggests that the interface impedance is due to an interfacial oxide layer of the electrode metal. The interface component observed by impedance spectroscopy in the Al/PCMO/Pt device might be due to Al oxide layer formed by oxidation of Al top electrode. It is considered that the interfacial oxide layer plays a dominant role in the bipolar resistance switching in manganite film-based devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577670PMC
http://dx.doi.org/10.1186/1556-276X-8-76DOI Listing

Publication Analysis

Top Keywords

resistance switching
28
impedance spectroscopy
12
pcmo-based devices
12
oxide layer
12
resistance
10
switching manganite
8
electric-pulse-induced resistance
8
hysteretic behavior
8
top electrode
8
high low
8

Similar Publications

Osteomyelitis is commonly caused by pathogens like , but rare organisms such as , typically associated with superficial skin infections, can also be implicated. Recognizing these atypical pathogens presents diagnostic and therapeutic challenges, especially in the presence of orthopedic hardware. We conducted a literature review yielding 25 studies and encompassing 797 patient cases, which highlights the emerging role of species in osteomyelitis, particularly following trauma or surgical interventions.

View Article and Find Full Text PDF

The damaging effects of changing climate on farm-household food security are steadily increasing in sub-Saharan Africa. Adaptation strategies are important for agrarian households to reduce the adverse effects on their food security. This study employed multivariate probit and endogenous switching regression models to analyze the determinants of farm households' choice of climate-change adaptation strategies, such as the cultivation of early maturing crops, early planting, growing drought-tolerant maize varieties, using precautionary savings, practicing income diversification, and sale of assets, and their effects on household food security in Tanzania.

View Article and Find Full Text PDF

Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.

View Article and Find Full Text PDF

Combined feature of enhanced stability and multi-level switching observed in TiN/Ta2O5/Ag-NPs/ITO/PET structure.

Nanotechnology

January 2025

Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minhang Area, Shanghai 200240, Shanghai, 200240, CHINA.

Both stability and multi-level switching are crucial performance aspects for resistive random-access memory (RRAM), each playing a significant role in improving overall device performance. In this study, we successfully integrate these two features into a single RRAM configuration by embedding Ag-nanoparticles (Ag-NPs) into the TiN/Ta2O5/ITO structure. The device exhibits substantially lower switching voltages, a larger switching ratio, and multi-level switching phenomena compared to many other nanoparticle-embedded devices.

View Article and Find Full Text PDF

Current trends in antimicrobial use and the role of antimicrobial stewardship in palliative oncology: a narrative review.

BMC Palliat Care

January 2025

Division of Infectious Diseases, Department of Internal Medicine, and Center for Infectious Diseases Research, American University of Beirut Medical Center, PO Box 11-0236, Riad , Beirut, 1107 2020, Lebanon.

Background: The overuse of antimicrobials is prevalent in palliative oncology care, with up to 86.9% of terminal cancer patients receiving these agents during end-of-life care. This overutilization stems from recurrent infections due to immunosuppression, malnutrition, and frequent hospitalizations, as well as difficulty differentiating infection-related symptoms from cancer-related complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!