Comparative analysis of gluten proteins in three durum wheat cultivars by a proteomic approach.

J Agric Food Chem

Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli 25- 71122, Foggia, Italy.

Published: March 2013

The gluten protein composition and expression level influence dough properties and are cultivar and environment dependent. To broaden the knowledge of the durum wheat gluten proteome, three cultivars were compared in two different growing seasons by a proteomic approach. Cultivar-specific and differentially expressed spots in the two years were identified by mass spectrometry. Significant differences were observed among the cultivars: Ofanto showed the lowest protein spot volumes in the high molecular weight (HMW) and low molecular weight (LMW) <35,000 regions and the highest in the LMW 48,000-35,000 region, Latino the lowest in the LMW 48,000-35,000 region, and Simeto an intermediate expression level in both LMW regions. In the warmer year the up-regulation of HMW glutenins, α-gliadins, and a globulin 3 protein and the down-expression of LMW glutenins and γ-gliadins were observed. Among the cultivars, Simeto showed the highest stability across the environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf304566dDOI Listing

Publication Analysis

Top Keywords

durum wheat
8
proteomic approach
8
molecular weight
8
comparative analysis
4
analysis gluten
4
gluten proteins
4
proteins three
4
three durum
4
wheat cultivars
4
cultivars proteomic
4

Similar Publications

Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.

View Article and Find Full Text PDF

Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!