The nitrogen isotope composition (δ¹⁵N) of plants has potential to provide time-integrated information on nitrogen uptake, assimilation and allocation. Here, we take advantage of existing T-DNA and γ-ray mutant lines of Arabidopsis thaliana to modify whole-plant and organ-level nitrogen isotope composition. Nitrate reductase 2 (nia2), nitrate reductase 1 (nia1) and nitrate transporter (nrt2) mutant lines and the Col-0 wild type were grown hydroponically under steady-state NO₃⁻ conditions at either 100 or 1000 μM NO₃⁻ for 35 days. There were no significant effects on whole-plant discrimination and growth in the assimilatory mutants (nia2 and nia1). Pronounced root vs leaf differences in δ¹⁵N, however, indicated that nia2 had an increased proportion of nitrogen assimilation of NO₃⁻ in leaves while nia1 had an increased proportion of assimilation in roots. These observations are consistent with reported ratios of nia1 and nia2 gene expression levels in leaves and roots. Greater whole-plant discrimination in nrt2 indicated an increase in efflux of unassimilated NO₃⁻ back to the rooting medium. This phenotype was associated with an overall reduction in NO₃⁻ uptake, assimilation and decreased partitioning of NO₃⁻ assimilation to the leaves, presumably because of decreased symplastic intercellular movement of NO₃⁻ in the root. Although the results were more varied than expected, they are interpretable within the context of expected mechanisms of whole-plant and organ-level nitrogen isotope discrimination that indicate variation in nitrogen fluxes, assimilation and allocation between lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.12038 | DOI Listing |
Water Res
December 2024
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:
Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF) and Mediterranean bioArchaeological Research Advances (MAReA) centre, Università degli studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy.
Our study explores the potential relationship between infant feeding practices and settlement complexity in the Roman Empire through high-resolution Bayesian-modeled stable isotope measurements from incremental dentine. We compiled isotopic data from permanent first molars of individuals from various Roman sites: five from Bainesse (UK), 30 from Thessaloniki (Greece), along with new carbon and nitrogen isotope analyses from four individuals from Pompeii and six from Ostia Via del Mare (AVM). Our results reveal significant inter-site variability in breastfeeding durations, ranging from 1.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Correction for 'Responses of CO and CH in the alpine wetlands of the Tibetan Plateau to warming and nitrogen and phosphorus additions' by Wenbao Zhang ,, 2024, , 1516-1525, https://doi.org/10.1039/D4EM00174E.
View Article and Find Full Text PDFFood web architecture and trophic interactions between organisms can be studied using ratios of naturally occurring stable isotopes of carbon (C/C) and nitrogen (N/N). Most studies, however, focused on free-living organisms, but recently, there has been growing interest in understanding trophic interactions of parasites. The crustacean ectoparasite is a well-studied parasite of freshwater teleost fish, which has low host specificity and a cosmopolitan distribution.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!