A broad-band (2135-2200 cm(-1)) infrared spectrum of the CO dimer is recorded using a tunable quantum cascade laser to probe a supersonic jet expansion with an effective rotational temperature of about 2.5 K. Analysis of the spectrum reveals the first known levels of the excited state (vCO = 1) with A(+) symmetry and establishes that resonant vibrational splittings are small (<0.2 cm(-1)) for both the C-bonded and O-bonded dimer isomers. The spectrum extends over a surprisingly large range, with somewhat reduced intensity above 2150 cm(-1). A total of 28 new "stacks" of rotational levels having A(-) symmetry are assigned for vCO = 1 on the basis of combination differences, adding to the 8 stacks previously known, and extending up to 51 cm(-1) above the vCO = 1 origin. Assignments are given for the first 13 stacks of vCO = 1 in terms of the very low frequency geared bending intermolecular vibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp312337v | DOI Listing |
Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging.
View Article and Find Full Text PDFWe demonstrate a broadband photothermal spectroscopy in the mid-infrared region using a quantum cascade laser frequency comb operating between ∼7.7 and ∼8.2 µm covering a frequency range of ∼70 cm.
View Article and Find Full Text PDFMid-infrared dual-comb spectroscopy offers significant advantages by combining the high sensitivity of mid-infrared spectroscopy with the high spectral resolution and rapid acquisition of the dual-comb method. However, its effective resolution, constrained by the inherent comb line spacing, hinders its ability to resolve narrow absorption features, common in critical applications such as sub-Doppler spectroscopy, low-pressure gas analysis, and construction of the atmospheric profile. To address this challenge, we present a synchronous offset frequency tuning method for the mid-infrared dual-comb system to improve effective resolution far beyond comb line spacing.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
Symmetry breaking is ubiquitous in chemical transformations and affects various physicochemical properties of materials and molecules; Jahn-Teller (JT) distortion of hexa-coordinated transition-metal-ligand complexes falls within this paradigm. An uneven occupancy of degenerate 3d-orbitals forces the complex to adopt an axially elongated or compressed geometry, lowering the symmetry of the system and lifting the degeneracy. Coordination complexes of Cu are known to exhibit axial elongation, while compression is far less common, although this may be due to the lack of rigorous experimental verification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!