Investigation of the nanoparticle protein corona, the shell of plasma proteins formed around nanoparticles immediately after they enter the bloodstream, is a benchmark in the study of the applications of nanoparticles in all fields of medicine, from pharmacology to toxicology. We report the first investigation of the protein corona adsorbed onto single-walled carbon nanotubes modified with 2 kDa molecular weight polyethylene glycol chains [PEG(2k)-modified SWCNTs or PEG2-SWCNTs] by using a large-scale gel-based proteomics method on biological replicates. More than 240 plasma proteins were selected, and their differences were analyzed among PEG2-SWCNTs differing in surface charge and PEG conformation. The protein corona of PEG2-SWCNTs showed that coagulation proteins, immunoglobulins, apolipoproteins, and proteins of the complement system were among the proteins bound by PEG2-SWCNTs and that their recruitment was independent from the isoelectric point, molecular weight, total hydrophobicity, and number of polyaromatic residues of the proteins. Statistical analysis on protein relative abundance revealed that PEG conformation had a higher influence on the PEG2-SWCNTs' protein corona repertoire than nanotube surface charge. PEG conformation also affected the biological performance of PEG2-SWCNTs. A change in PEG conformation from mushroom to mushroom-brush transition affected the competitive adsorption of the major constituents of the protein corona of PEG2-SWCNTs and promoted shorter blood circulation time, faster renal excretion, and higher relative spleen versus liver uptake of PEG2-SWCNTs. Our data suggest that the protein corona, along with steric stabilization, may mediate the action of PEG conformation on the pharmacokinetic profile of PEG-modified SWCNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn400409hDOI Listing

Publication Analysis

Top Keywords

protein corona
28
peg conformation
20
polyethylene glycol
8
protein
8
single-walled carbon
8
carbon nanotubes
8
biological performance
8
plasma proteins
8
molecular weight
8
surface charge
8

Similar Publications

Mesenchymal stromal cells-extracellular vesicles: protein corona as a camouflage mechanism?

Extracell Vesicles Circ Nucl Acids

November 2024

Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.

Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.

View Article and Find Full Text PDF

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Investigating the delivery of PD-L1-targeted immunoliposomes in a dynamic cervical cancer-on-a-chip model.

J Control Release

January 2025

Precision Medicine in Oncology (PrMiO), and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands. Electronic address:

The recent approval of pembrolizumab in recurrent or metastatic cervical cancer warrants further investigations into the usefulness of immunotherapies for more durable and less radical interventions. In this study, the targeting potential of anti-PD-L1-functionalized immunoliposomes was tested in a 3D in vitro cervical cancer-on-a-chip model. Immunolipsomes were synthesized and decorated externally with monovalent anti-PD-L1 Fab' fragments of commercially available atezolizumab.

View Article and Find Full Text PDF

Peptide-based nanomaterials can be easily functionalized due to their functional groups, as well as being biocompatible, stable under physiological conditions, and nontoxic. Here, diphenylalanineamide-based nanomaterials (FFANMs) were synthesized, decorated with Ca ions to set the surface charge, and characterized for possible use in gene delivery and drug release studies. FFANMs were characterized by SEM, TEM, dynamic light scattering (DLS), and LC-MS/MS.

View Article and Find Full Text PDF
Article Synopsis
  • Neurofilament light chain (Nf-L) is identified as a potential biomarker for diagnosing neurological disorders in cattle, paralleling its established role in human neurology.
  • The study found that Nf-L levels varied significantly between healthy and sick cattle, with consistent median levels detected in serum and cerebrospinal fluid (CSF) across different age groups.
  • There is a promising association between Nf-L levels in serum and CSF, particularly in cattle with neurological disorders, indicating that Nf-L could serve as a valuable diagnostic tool in veterinary practices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!