Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy.

ACS Nano

Guangdong Key Laboratory of Nanomedicine, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China.

Published: March 2013

A combination of chemotherapy and photothermal therapy has emerged as a promising strategy for cancer therapy. To ensure the chemotherapeutic drug and photothermal agent could be simultaneously delivered to a tumor region to exert their synergistic effect, a safe and efficient delivery system is highly desirable. Herein, we fabricated doxorubicin (DOX) and indocyanine green (ICG) loaded poly(lactic-co-glycolic acid) (PLGA)-lecithin-polyethylene glycol (PEG) nanoparticles (DINPs) using a single-step sonication method. The DINPs exhibited good monodispersity, excellent fluorescence/size stability, and consistent spectra characteristics compared with free ICG or DOX. Moreover, the DINPs showed higher temperature response, faster DOX release under laser irradiation, and longer retention time in tumor. In the meantime, the fluorescence of DOX and ICG in DINPs was also visualized for the process of subcellular location in vitro and metabolic distribution in vivo. In comparison with chemo or photothermal treatment alone, the combined treatment of DINPs with laser irradiation synergistically induced the apoptosis and death of DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells, and suppressed MCF-7 and MCF-7/ADR tumor growth in vivo. Notably, no tumor recurrence was observed after only a single dose of DINPs with laser irradiation. Hence, the well-defined DINPs exhibited great potential in targeting cancer imaging and chemo-photothermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn400334yDOI Listing

Publication Analysis

Top Keywords

laser irradiation
12
dinps exhibited
8
dinps laser
8
dinps
7
single-step assembly
4
assembly dox/icg
4
dox/icg loaded
4
loaded lipid--polymer
4
lipid--polymer nanoparticles
4
nanoparticles highly
4

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Clinical features, diagnosis, management, and prognosis of circumscribed choroidal hemangioma.

Surv Ophthalmol

January 2025

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China. Electronic address:

Because of its benign nature and rarity, circumscribed choroidal hemangioma (CCH) often receives limited attention, leading to a high rate of misdiagnosis and a lack of standardized treatment protocols. We provide a thorough clarification of the demographics, clinical features, diagnosis, management, and prognosis of CCH. We conducted a systematic search of the PubMed, EMBASE, and Ovid databases up to December, 2023, to identify relevant studies.

View Article and Find Full Text PDF

The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!