The aim of this pilot study was to evaluate the bioactive, surface-coated polycaprolactone-co-lactide scaffolds as bone implants in a tibia critical size defect model. Polycaprolactone-co-lactide scaffolds were coated with collagen type I and chondroitin sulfate and 30 piled up polycaprolactone-co-lactide scaffolds were implanted into a 3 cm sheep tibia critical size defect for 3 or 12 months (n = 5 each). Bone healing was estimated by quantification of bone volume in the defects on computer tomography and microcomputer tomography scans, plain radiographs, biomechanical testing as well as by histological evaluations. New bone formation occurred at the proximal and distal ends of the tibia in both groups. The current pilot study revealed a mean new bone formation of 63% and 172% after 3 and 12 months, respectively. The bioactive, surface coated, highly porous three-dimensional polycaprolactone-co-lactide scaffold stack itself acted as a guide rail for new bone formation along and into the implant. These preliminary data are encouraging for future experiments with a larger group of animals.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328212471409DOI Listing

Publication Analysis

Top Keywords

polycaprolactone-co-lactide scaffolds
16
pilot study
12
bone formation
12
surface-coated polycaprolactone-co-lactide
8
tibia critical
8
critical size
8
size defect
8
bone
6
polycaprolactone-co-lactide
5
healing properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!