The members of high-temperature requirement (HtrA) family are evolutionarily conserved serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. HtrA2, a special one, is mainly located in mitochondria and required for maintaining homeostasis. Once released into cytoplasm, HtrA2 contributes to apoptosis via caspase-dependent and -independent pathways. Accumulating evidence has showed its pro-apoptotic effect in cancers and central nervous system (CNS) diseases. However, the distribution and function of HtrA2 in CNS diseases remains to be further explored. To investigate HtrA2's roles in the pathophysiology of intracerebral hemorrhage (ICH), an ICH rat model was established and assessed by behavioral tests. Western blot and immunohistochemistry revealed a remarkable up-regulation of HtrA2 surrounding the hematoma after ICH; and immunofluorescence showed HtrA2 was strikingly increased in neurons, but not in astrocytes and oligodendrocytes. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining suggested the involvement of HtrA2 in neuronal apoptosis after ICH. Additionally, HtrA2 co-localized with active-caspase-3 around the hematoma and the expression of active-caspase-3 was parallel with that of HtrA2 in a time-dependent manner. Furthermore, hemin was used to stimulus a neuronal cell line PC12 to mimic ICH model in vitro. We analyzed the relationship of HtrA2 with X-linked inhibitor of apoptosis protein (XIAP) in PC12 cells by Western blot, immunofluorescence and co-immunoprecipitation. The connection of HtrA2 with XIAP was strengthened in apoptotic cells after hemin treatment. Thus, we speculated that HtrA2 might exert an important function in regulating caspase-dependent neuronal apoptosis through interacting with XIAP following ICH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10735-013-9489-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!