A new hydrogen sensor was fabricated by coating a Pd-decorated In2O3 film on Au electrodes. In response to 1 vol% H2 at room temperature, an ultra high sensitivity of 4.6 × 10(7) was achieved. But after an annealing treatment in vacuum, its sensitivity degenerated by 4 orders of magnitude. In addition, the response time and recovery time were also extended from 28 s and 32 s to 242 s and 108 s, respectively. It was found from contrast experiments that Pd decoration was essential to make the sensor work at room temperature and Schottky barriers played a vital role in enhancing the sensor's performance. The methodology demonstrated in this paper shows that a combination of novel sensing materials and Schottky contact is an effective approach to design high-performance gas sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr33872j | DOI Listing |
Nano Lett
January 2025
Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China.
Achieving high mobility while minimizing off-current and static power consumption is critical for applications of two-dimensional field-effect transistors. Herein, a selenium (Se) sacrificial layer is introduced between the rhenium sulfide (ReS) semiconductor and source/drain electrode. With the Se layer and postannealing process, the ReS transistor significantly decreases the off-state current with a substantial increase in the on-state current density.
View Article and Find Full Text PDFNano Lett
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
GaO Schottky photodiodes are being actively explored for solar-blind ultraviolet (SBUV) detection, owing to the fast photoresponse and easy fabrication. However, their performance, limited by the Schottky contact, mostly underperforms the expectations. Herein, a Ni/β-GaO vertical Schottky barrier diode (SBD) with an ultrathin anode electrode is demonstrated.
View Article and Find Full Text PDFACS Omega
December 2024
Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India.
This work presents a density functional theory (DFT) study of substitutional and adsorption-based halogen (I or F) doping of WS-based transistors to enhance their contact properties. Substitutional doping of the WS monolayer with halogens results in -type behavior, while halogen adsorption on the surface of the WS monolayer induces -type behavior. This is attributed to differing directions of charge flow, as supported by the Mulliken analysis.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, National Engineering Research Center of Wide Band-Gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China.
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-GaO-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the V of the Ti/Au anode SBD is merely 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!