The multireference spin-orbit (SO) configuration interaction (CI) method in its Λ-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CF3I relevant to its photodissociation in the lowest absorption band (A band). The computed equilibrium geometry for the X̃A1 ground state and vibrational frequency ν3 for the C-I stretch mode agree well with available experimental data. The (3)Q0(+) state dissociating to the excited I((2)P1/2) limit is found to have a minimum of 1570 cm(-1) significantly shifted to larger internuclear distances (RC-I = 5.3 a0) relative to the ground state. Similar to the CH3I case, this makes a single-exponent approximation commonly employed for analysis of the CF3I recoil dynamics unsuitable. The 4E((3)A1) state possessing an allowed transition from the ground state and converging to the same atomic limit as (3)Q0(+) is calculated to lie too high in the Franck-Condon region to have any significant impact on the A-band absorption. The computed vertical excitation energies for the (3)Q1, (3)Q0(+), and (1)Q states indicate that the A-band spectrum must lie approximately between 31,300 and 45,200 cm(-1), i.e., between 220 and 320 nm. This result is in very good agreement with the measured absorption spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp44237c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!