Highly emissive platinum(II) complexes bearing carbene and cyclometalated ligands.

Dalton Trans

Department of Materials and Life Science, Seikei University, Kichijoji-Kitamachi, Musashino, Tokyo 180-8633, Japan.

Published: May 2013

A series of heteroleptic platinum(II) complexes (1a-3a and 1b-3b) bearing a dicarbene ligand and a cyclometalated bidentate ligand have been prepared. Two of the complexes (1a and 3a) were characterized by X-ray diffraction analyses, confirming the square-planar structures. Detailed spectroscopic properties of the complexes have been studied, and two complexes, 3a and 3b bearing a carbene chelate, which has a trimethylene group between the two N-heterocyclic carbene ligating groups, show intense luminescence (quantum yields >50%) in fluid solution at room temperature. Non-radiative rate constants of the emissive excited states of the complexes vary markedly among the 6 complexes, although radiative constants of them lie in a narrow range of values, so that the difference in the photophysical properties is ascribed to the difference in the non-radiative decay rates. The photophysical parameters have been discussed with the results of the quantum mechanical calculations. The DFT and TDDFT calculations show that the emissive excited states have mainly ligand-centered character with a slight contribution of MLCT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt32866jDOI Listing

Publication Analysis

Top Keywords

platinumii complexes
8
complexes bearing
8
bearing carbene
8
emissive excited
8
excited states
8
complexes
7
highly emissive
4
emissive platinumii
4
carbene cyclometalated
4
cyclometalated ligands
4

Similar Publications

The synthesis and characterization of novel platinum(II) and platinum(IV) complexes derived from unsymmetrical ethylene or propylenediamine derivatives are presented. IR spectroscopy and ESI mass spectrometry techniques were employed to characterize the complexes, revealing distinctive absorption bands and isotope patterns. Furthermore, the complexes were characterized by H and C NMR spectroscopy.

View Article and Find Full Text PDF

Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.

View Article and Find Full Text PDF

This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).

View Article and Find Full Text PDF

What happened to BBR3464 and where to from here for multinuclear platinum-based anticancer drugs?

Dalton Trans

December 2024

School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia.

The development of the trinuclear platinum(II) complex BBR3464 (also known as triplatin) in the late 1990s was meant to be a revolution in the field of platinum chemotherapy. What made it remarkable was that it defied many of the known structure-activity rules for platinums; it is cationic, has a single labile leaving group on each terminal platinum, and it binds DNA in ways different to mononuclear platinum drugs, like cisplatin and oxaliplatin. The flexible, long-range adducts the drug forms with DNA means that it showed activity in cancers not typically sensitive to platinums, and more importantly, BBR3464 demonstrated an ability to overcome acquired resistance to platinum drugs.

View Article and Find Full Text PDF
Article Synopsis
  • - G-quadruplexes are important for cancer therapy, and understanding how compounds (ligands) interact with them is key for developing new anticancer drugs.
  • - A new platinum(II) complex (Pt1) was created using a berberine derivative as a ligand, and its structure was studied using various scientific methods.
  • - The study found that Pt1 binds well to G-quadruplex DNA, especially targeting the bcl-2 G-quadruplex, and showed effectiveness in inhibiting the growth of different tumor cells, indicating its potential as an antitumor agent.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!