A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic effects of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillaries of varying cross sections. | LitMetric

Synergistic effects of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillaries of varying cross sections.

J Colloid Interface Sci

Department of Soil and Water Sciences, The RH Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.

Published: April 2013

Understanding the role of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillary tubes has theoretical and practical aspects alike. The specific and synergistic effects of these factors were studied theoretically using a mathematical model that includes inertial and dynamic contact angle terms. After validating the model for capillaries of uniform cross section, the model was extended to capillaries with sinusoidal modulations of the radius, since in practice, capillaries rarely have uniform cross-sections. The height of the meniscus during wetting and dewetting was significantly affected by the relations between the local slope of the capillary surface and the Young contact angle. Non-dimensional variables were defined using viscous effects and gravity as the scaling parameters. Simulations using the dimensionless model showed that the inertial and dynamic contact angle terms can be neglected for narrow capillaries of uniform cross-section but not for uniform, wide cross-section capillaries. Moreover, nonuniformity in cross-sectional area induced hysteresis, deceleration, blocking, and metastable equilibrium locations. An increase in contact angle further amplified the effect of geometry on wetting and dewetting processes. These results enable characterization and modeling of fluid retention and flow in porous structures that inherently consist of capillaries of varying cross section.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2013.01.022DOI Listing

Publication Analysis

Top Keywords

contact angle
24
dynamic contact
16
wetting dewetting
16
synergistic effects
8
geometry inertia
8
inertia dynamic
8
angle wetting
8
capillaries varying
8
varying cross
8
inertial dynamic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!