A rapid and sensitive analytical method for the determination of ethylenethiourea (ETU) in potatoes and cucumbers is developed. This method employs modified QuEChERS followed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. ETU was extracted by alkaline acetonitrile (containing 1%NH(3).H(2)0), separated on a ZIC-pHILIC column, confirmed by multiple reaction monitoring (MRM) mode with electrospray ionisation source. This modified procedure showed satisfactory recovery (90.6-103.5%) fortified at the range of 0.005-0.05 mg kg(-1) with relative standard deviation (RSD)<7%. The limits of detection (LOD) and the limits of quantification (LOQ) were 0.002 mg kg(-1) and 0.005 mg kg(-1), respectively. Matrix effect and HILIC retention mechanism were also evaluated. The method was finally applied to detect ETU in potato and cucumber samples collected at harvest period. Residues of ETU were detected in four cucumber samples with the level lower than LOQ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2012.11.038DOI Listing

Publication Analysis

Top Keywords

modified quechers
8
quechers high
8
high performance
8
performance liquid
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
rapid determination
4
determination method
4
method ethylenethiourea
4

Similar Publications

The influence of additives and modifiers on the chiral HPLC separation of the nicotine enantiomers using UV/Vis detection is discussed. Selected alcohols as modifiers and selected amines as additives were found to have a significant effect on the resolution and retention times of nicotine enantiomers even to the point of eliminating component elution. Systematic variations in the concentration of ethanol, methanol, and isopropanol, as modifiers, along with variations in the concentration of diethylamine, triethylamine, tributylamine, ethylenediamine, isopropylamine, as additives, revealed that the average resolution (R) of the nicotine enantiomers ranged from 2.

View Article and Find Full Text PDF

Highly efficient and convenient QuEChERS using ZIF-67 derived magnetic nanoporous carbon for determination of carbamate pesticides in various vegetable and fruit samples.

Food Chem

January 2025

School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China. Electronic address:

Effective and convenient QuEChERS of lipophilic pesticides with wide pK range from strongly pigment-rich food samples remains a great challenge. Here, a ZIF-67 derived magnetic nanoporous carbon (Co@MPC) was firstly proposed for modified QuEChERS of carbamate pesticides (pK 4.3-12.

View Article and Find Full Text PDF

Multiresidue Methods Analysis to Detect Contamination of Selected Metals in Honey and Pesticides in Honey and Pollen.

Foods

December 2024

Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy.

Honey, a natural food with a rich history, is produced by honeybees and other species of bees from nectar, other plant fluids, and honeydew of sap-sucking insects. During foraging, these bees may be exposed to plant protection products (PPPs), metals, and metalloids, potentially leading to residues in honey and hive products that could have a negative impact on human safety. Recognizing the lack of an appropriate methodology for pesticide contamination of honey and other hive products, this research aims to support the need for studies on residues in pollen and bee products for human consumption to establish safe maximum residue levels (MRLs) for consumers.

View Article and Find Full Text PDF

Mycotoxins are secondary metabolites of fungi and represent a serious problem for human health. Due to growing interest, various aspects have been widely studied by scientific groups. One of these aspects relates to the food industry and associated beer production.

View Article and Find Full Text PDF

Evaluation of PFAS extraction and analysis methods for biosolids.

Talanta

December 2024

Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!