A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An appraisal of the chemical and thermal stability of silica based reversed-phase liquid chromatographic stationary phases employed within the pharmaceutical environment. | LitMetric

An appraisal of the chemical and thermal stability of silica based reversed-phase liquid chromatographic stationary phases employed within the pharmaceutical environment.

J Pharm Biomed Anal

Universidade Estadual de Campinas, Instituto de Química, Rua Monteiro Lobato, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, Brazil.

Published: April 2013

Mobile phase pH and temperature are major factors in determining retention, selectivity and chromatographic performance of ionizable compounds. This imposes a requirement that stationary phases must ideally be stable in both acidic and basic conditions coupled with good thermal stability, in order to be able to chromatograph these compounds in either their ionized or ion-suppressed modes. The development of a range of new high and/or low pH stable silica based RPLC stationary phases (including sub-2 μm fully porous and sub-3 μm fused core-shell materials), which are specially designed for the analysis of ionizable compounds and their chemical and thermal stability is reviewed. The ability to utilize both pH and temperature as selectivity variables allows the chromatographer to exploit a much wider method development design space including previously prohibited alkaline conditions. This greatly increases the probability of satisfying the desired chromatographic selectivity and performance criteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2013.01.013DOI Listing

Publication Analysis

Top Keywords

thermal stability
12
stationary phases
12
chemical thermal
8
silica based
8
ionizable compounds
8
appraisal chemical
4
stability silica
4
based reversed-phase
4
reversed-phase liquid
4
liquid chromatographic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!