Novel N-indolylmethyl substituted spiroindoline-3,2'-quinazolines were designed as potential inhibitiors of SIRT1. These compounds were synthesized in good yields by using Pd/C-Cu mediated coupling-cyclization strategy as a key step involving the reaction of 1-(prop-2-ynyl)-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione with 2-iodoanilides. Some of the compounds synthesized have shown encouraging inhibition of Sir 2 protein (a yeast homologue of mammalian SIRT1) in vitro and three of them showed dose dependent inhibition of Sir 2. The docking results suggested that the benzene ring of 1,2,3,4-tetrahydroquinazolin ring system of these molecules occupied the deep hydrophobic pocket of the protein and one of the NH along with the sulfonyl group participated in strong H-bonding interaction with the amino acid residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2012.12.089 | DOI Listing |
Org Biomol Chem
April 2013
Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
A new strategy for converting antipsychotic drug olanzapine into PDE4 inhibitors is described via the design and Pd/C mediated synthesis of novel N-indolylmethyl olanzapine derivatives. One compound showed good inhibition (IC50 1.1 μM) and >10 fold selectivity towards PDE4B over D that was supported by docking studies.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2013
Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500 046, India.
Novel N-indolylmethyl substituted spiroindoline-3,2'-quinazolines were designed as potential inhibitiors of SIRT1. These compounds were synthesized in good yields by using Pd/C-Cu mediated coupling-cyclization strategy as a key step involving the reaction of 1-(prop-2-ynyl)-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione with 2-iodoanilides. Some of the compounds synthesized have shown encouraging inhibition of Sir 2 protein (a yeast homologue of mammalian SIRT1) in vitro and three of them showed dose dependent inhibition of Sir 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!