Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Even when faced with elimination, functional materials may offer new alternatives to expensive drugs. Once used to treat benign prostate hypertrophy, the US Food and Drug Administration (FDA) suspended the use of lonidamine due to the occurrence of liver problems arising from its poor pharmaceutical properties. The objectives of the present study were to develop targeting lonidamine liposomes in combination with targeting epirubicin liposomes to circumvent drug-resistant cancer. Evaluations were performed on A549 and drug-resistant A549cDDP lung cancer cells and drug-resistant A549cDDP xenografted BALB/c nude mice. A DQA-PEG(2000)-DSPE conjugate was incorporated onto the liposomes as a targeting molecule. The constructed targeting lonidamine liposomes and targeting epirubicin liposomes measured were approximately 80 nm. The targeting lonidamine liposomes significantly enhanced the inhibitory effect of the targeting epirubicin liposomes in the drug-resistant A549cDDP cells in a lonidamine dose-dependent manner. Mechanism studies revealed that the targeting liposomes were selectively accumulated in the mitochondria, dissipating the mitochondrial membrane potential, opening the mitochondrial permeability transition pores, and releasing cytochrome C by translocation. This initiated a cascade of caspase 9 and 3 reactions and activated the pro-apoptotic Bax protein while suppressing the anti-apoptotic Mcl-1 protein, thereby enhancing the cytotoxic effect by acting on the mitochondrial signaling pathways. The efficacy in treating the drug-resistant A549cDDP xenografted tumor model after administration of the targeting lonidamine liposomes plus targeting epirubicin liposomes was the most significant compared with the administration of the controls at comparable doses. In conclusion, targeting lonidamine liposomes could be used as a potent co-therapy with an anticancer agent to enhance the efficacy of treating drug-resistant cancer by acting on the mitochondrial signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2013.01.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!