In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi.

J Ocul Pharmacol Ther

Laboratory of Ocular Pharmacology, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China.

Published: March 2013

Purpose: Fungal keratitis is emerging as a major cause of vision loss in a developing country such as China because of higher incidence and the unavailability of effective antifungals. It is urgent to explore broad-spectrum antifungals to effectively suppress ocular fungal pathogens, and to develop new antifungal eye drops to combat this vision-threatening infection. The aim of this study is to investigate the antifungal activity of silver nanoparticles (nano-Ag) in comparison with that of natamycin against ocular pathogenic filamentous fungi in vitro.

Methods: Susceptibility tests were performed against 216 strains of fungi isolated from patients with fungal keratitis from the Henan Eye Institute in China by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute M38-A document. The isolates included 112 Fusarium isolates (82 Fusarium solani species complex, 20 Fusarium verticillioides species complex, and 10 Fusarium oxysporum species complex), 94 Aspergillus isolates (61 Aspergillus flavus species complex, 11 Aspergillus fumigatus species complex, 12 Aspergillus versicolor species complex, and 10 Aspergillus niger species complex), and 10 Alternaria alternata isolates. The minimum inhibitory concentration (MIC) range and mode, the MIC for 50% of the strains tested (MIC50 value), and the MIC90 value were provided for the isolates with the SPSS statistical package.

Results: MIC50 value of nano-Ag were 1, 0.5, and 0.5 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of nano-Ag were 1, 1, and 1 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC50 values of natamycin were 4, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of natamycin were 8, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively.

Conclusions: Nano-Ag, relative to natamycin, exhibits potent in vitro activity against ocular pathogenic filamentous fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jop.2012.0155DOI Listing

Publication Analysis

Top Keywords

species complex
28
filamentous fungi
16
complex aspergillus
16
μg/ml fusarium
16
fusarium spp
16
spp aspergillus
16
aspergillus spp
16
spp alternata
16
ocular pathogenic
12
pathogenic filamentous
12

Similar Publications

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Troponin C is required for copulation and ovulation in Nilaparvata lugens.

Insect Biochem Mol Biol

January 2025

Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China. Electronic address:

Troponin C (TnC) is a calcium-binding subunit of the troponin complex that regulates muscle contraction in animals. However, the physiological roles of TnC, especially in insect development and reproduction, remain largely unknown. We identified seven TnC genes encoding four EF-hand motif protein in the rice pest, the brown planthopper Nilaparvata lugens.

View Article and Find Full Text PDF

The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.

View Article and Find Full Text PDF

Evidence for the independent evolution of a rectal complex within the beetle superfamily Scarabaeoidea.

Arthropod Struct Dev

January 2025

Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) - University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy.

Rectal or cryptonephridial complexes have evolved repeatedly in arthropods, including in beetles where they occur in ∼190,000 species of Cucujiformia + Bostrichoidea, and Lepidoptera where they occur in ∼160,000 species. Sections of the Malpighian/renal tubules coat the outer surface of the rectum, acting as powerful recycling systems of the gut contents, recovering water and specific solutes. There are hints that a rectal complex evolved independently within another beetle group, Scarabaeoidea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!