Amplification of chiroptical activity of chiral biomolecules by surface plasmons.

Nano Lett

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Published: March 2013

Chiral molecules are shown to induce circular dichroism (CD) at surface plasmon resonances of gold nanostructures when in proximity to the metal surface without direct bonding to the metal. By changing the molecule-Au separation, we were able to learn about the mechanism of plasmonic CD induction for such nanostructures. It was found that even two monolayers of chiral molecules can induce observable plasmonic CD, while without the presence of the plasmonic nanostructures their own CD signal is unmeasurable. Hence, plasmonic arrays could offer a route to enhanced sensitivity for chirality detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl304638aDOI Listing

Publication Analysis

Top Keywords

chiral molecules
8
molecules induce
8
amplification chiroptical
4
chiroptical activity
4
activity chiral
4
chiral biomolecules
4
biomolecules surface
4
surface plasmons
4
plasmons chiral
4
induce circular
4

Similar Publications

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

A three-component cascade boronation-dearomatization reaction of alkenes, a diboron compound, and a pyridinium salt is diclosed, affording chiral boron-containing 1,4-dihyropyridines in high yields (≤98%) and diastereoselectivity (≤10:1 dr), along with excellent enantioselectivity (typically >99% ee). The catalytic system performs efficiently at low catalyst loadings (1 mol %) and was tested with >50 examples, including some biologically active molecules.

View Article and Find Full Text PDF

All-carbon supramolecular complexation of a bilayer molecular nanographene with [60] and [70]fullerenes.

Org Chem Front

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Av. Complutense S/N 28040 Madrid Spain

Supramolecular chemistry of carbon-based materials provides a variety of chemical structures with potential applications in materials science and biomedicine. Here, we explore the supramolecular complexation of fullerenes C and C, highlighting the ability of molecular nanographene tweezers to capture these structures. The binding constant for the CNG-1⊃C complex was significantly higher than for CNG-1⊃C, showing a clear selectivity for the more π-extended C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!