Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dehydrogenation of n-hexane and cycloalkanes giving n-hexene and cycloalkenes has been observed in the reaction of such hydrocarbons with hydrogen peroxide, in the presence of copper complexes bearing trispyrazolylborate ligands. This catalytic transformation provides the typical oxidation products (alcohol and ketones) with small amounts of the alkenes, a novel feature in this kind of oxidative processes. Experimental data exclude the participation of hydroxyl radicals derived from Fenton-like reaction mechanisms. DFT studies support a copper-oxo active species, which initiates the reaction by H abstraction. Spin crossover from the triplet to the singlet state, which is required to recover the catalyst, yields the major hydroxylation and minor dehydrogenation products. Further calculations suggested that the superoxo and hydroperoxo species are less reactive than the oxo. A complete mechanistic proposal in agreement with all experimental and computational data is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja310866k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!