CagA protein contributes to pro-inflammatory responses during H. pylori infection, following its intracellular delivery to gastric epithelial cells. Here, we report for the first time in an isogenic background, on the subtle role of CagA phosphorylation on terminal EPIYA-C motifs in the transcriptional activation and expression of IL-8. We utilized isogenic H. pylori mutants of P12 reference strain, expressing CagA with varying number of EPIYA-C motifs and the corresponding phosphorylation defective EPIFA-C motifs while preserving intact the CM multimerization motifs. These mutants had been previously closely scrutinized in terms of type IV secretion system functionality, CagA translocation and its subsequent phosphorylation. Following infection of gastric epithelial cell lines, transcriptional activation of IL-8 gene and secreted IL-8 levels were found to be strictly dependent upon the functionality of the EPIYA-C phosphorylation motifs, as EPIFA-C phosphorylation-deficient CagA expression failed to induce full IL-8 transcriptional activity. Interestingly, levels of IL-8 gene activation and of secreted IL-8 were the same, irrespective of the number of EPIYA-C terminal repeats. We monitored IkBα phosphorylation and confirmed CagA involvement in NF-kB activation. Furthermore, we observed that presence of EPIYA-C functional phosphorylation motifs contributed to NF-kB activation. NF-kB upstream signaling events, such as early ERK1/2 and AKT activation were confirmed to be independent of EPIYA-C phosphorylation. On the contrary, use of TAK1 specific inhibitor 5Z-7-Oxozeaenol resulted in complete arrest of IL-8 secretion, in a dose-dependent manner, irrespective of CagA status. H. pylori-infected TAK1(-/-) mouse embryonic fibroblasts (MEFs) failed to induce NF-kB activity, unlike the respective control MEFs. CagA and TAK1 were found to immunoprecipitate together, irrespective of CagA EPIYA-C status, thus confirming earlier reports of TAK1 and CagA protein interaction. Our data suggest that CagA may potentially interfere with TAK1 activity during NF-kB activation for IL-8 induction in early H. pylori infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567036PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056291PLOS

Publication Analysis

Top Keywords

phosphorylation motifs
12
caga
12
nf-kb activation
12
il-8
9
phosphorylation
8
il-8 secretion
8
irrespective number
8
caga protein
8
pylori infection
8
gastric epithelial
8

Similar Publications

Background: Spinal cord injury (SCI) is a neurological disease characterized by high disability and mortality rates. Tomatidine, a natural steroid alkaloid, has been evidenced to have neuroprotective properties. However, the underlying mechanisms of tomatidine in treating SCI remain ambiguous.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) and multiple system atrophy (MSA) are classified as α-synucleinopathies and are primarily differentiated by their clinical phenotypes. Delineating these diseases based on their specific α-synuclein (α-Syn) proteoform pathologies is crucial for accurate antemortem biomarker diagnosis. Newly identified α-Syn pathologies in PD raise questions about whether MSA exhibits a similar diversity.

View Article and Find Full Text PDF

Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.

View Article and Find Full Text PDF

SRPK1 facilitates IBDV replication by phosphorylating VP1 at S48.

Int J Biol Macromol

December 2024

Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China. Electronic address:

Infectious Bursal Disease Virus (IBDV), a double-stranded RNA virus of the Avibirnavirus genus, causes significant vaccine failures in immunocompromised young poultry. The VP1 protein of IBDV undergoes post-translational modifications that are critical for viral RNA transcription, genome replication, and overall viral proliferation. Phosphorylation enhances the ability of the IBDV polymerase VP1 and facilitates viral replication, while the specific mechanisms underlying VP1 phosphorylation and its role in the IBDV life cycle remain largely unexplored.

View Article and Find Full Text PDF

Stress contingent changes in Hog1 pathway architecture and regulation in Candida albicans.

PLoS Pathog

December 2024

Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.

The Hog1 stress-activated protein kinase (SAPK) is a key mediator of stress resistance and virulence in Candida albicans. Hog1 activation via phosphorylation of the canonical TGY motif is mediated by the Pbs2 MAPKK, which itself is activated by the Ssk2 MAPKKK. Although this three-tiered SAPK signalling module is well characterised, it is unclear how Hog1 activation is regulated in response to different stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!