Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells.

PLoS One

Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal.

Published: September 2013

A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568136PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055439PLOS

Publication Analysis

Top Keywords

ethanol stress
28
yeast cells
12
ethanol
8
stress
8
metabolomics data
8
stress resistance
8
yeast
7
fps1
5
quantitative 1h-nmr-metabolomics
4
1h-nmr-metabolomics reveals
4

Similar Publications

This study investigated the antihyperglycemic potential of a hydroalcoholic extract from Syzygium malaccense leaves (E-SM) and isolate phenolic compounds with antioxidant and cytotoxic activities through a bioguided assay. The aim was to explore the therapeutic properties of S. malaccense in managing hyperglycemia and oxidative stress-related conditions.

View Article and Find Full Text PDF

Sodium valproate- a salt of valproic acid (VPA), is an anticonvulsant used in the treatment of epilepsy and a range of psychiatric conditions that include panic attacks, anxiety, post-traumatic stress, migraine and bipolar disorder etc. VPA can cause direct damage to many tissues due to accumulation of toxic metabolites. Nowadays, phytochemicals are amongst the best options for the treatment of diseases.

View Article and Find Full Text PDF

Stress is a major contributing factor to binge drinking and development of alcohol use disorders (AUD), particularly in women. Both stress and chronic ethanol can enhance neuroinflammatory processes, which may dysregulate limbic circuits involved in ethanol reinforcement. Clinical and preclinical studies have identified sex differences in alcohol intake in response to neuroinflammatory triggers.

View Article and Find Full Text PDF

Background: Drug-induced hepatotoxicity, particularly from ethanol and acetaminophen (APAP), is a pressing global health challenge. This damage arises from oxidative stress and inflammation, manifesting as elevated liver enzymes and structural liver alterations. Resveratrol and silymarin, recognized for their antioxidant and anti-inflammatory properties, offer potential hepatoprotective benefits.

View Article and Find Full Text PDF

Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are fungus-farming woodborers that can cause damage to the trees they colonize. Some of these beetles target stressed plants that emit ethanol, and management strategies have proposed using ethanol-injected trees as trap trees to monitor or divert dispersing adult females away from valuable crops. In this study, we used container-grown trees from 8 species to compare the effect of ethanol injection versus flooding on ambrosia beetle host selection and colonization success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!