Waves of calcium depletion in the sarcoplasmic reticulum of vascular smooth muscle cells: an inside view of spatiotemporal Ca2+ regulation.

PLoS One

Child & Family Research Institute, Department of Anaesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.

Published: September 2013

Agonist-stimulated smooth muscle Ca2+ waves regulate blood vessel tone and vasomotion. Previous studies employing cytoplasmic Ca2+ indicators revealed that these Ca2+ waves were stimulated by a combination of inositol 1,4,5-trisphosphate- and Ca2+ -induced Ca2+ release from the endo/sarcoplasmic reticulum. Herein, we present the first report of endothelin-1 stimulated waves of Ca2+ depletion from the sarcoplasmic reticulum of vascular smooth muscle cells using a calsequestrin-targeted Ca2+ indicator. Our findings confirm that these waves are due to regenerative Ca2+ -induced Ca2+ release by the receptors for inositol 1,4,5-trisphosphate. Our main new finding is a transient elevation in SR luminal Ca2+ concentration ([Ca2+](SR)) both at the site of wave initiation, just before regenerative Ca2+ release commences, and at the advancing wave front, during propagation. This strongly suggests a role for [Ca2+](SR) in the activation of inositol 1,4,5-trisphosphate receptors during agonist-induced calcium waves. In addition, quantitative analysis of the gradual decrease in the velocity of the depletion wave, observed in the absence of external Ca2+, indicates continuity of the lumen of the sarcoplasmic reticulum network. Finally, our observation that the depletion wave was arrested by the nuclear envelope may have implications for selective Ca2+ signalling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567057PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055333PLOS

Publication Analysis

Top Keywords

ca2+
14
sarcoplasmic reticulum
12
smooth muscle
12
ca2+ release
12
depletion sarcoplasmic
8
reticulum vascular
8
vascular smooth
8
muscle cells
8
ca2+ waves
8
ca2+ -induced
8

Similar Publications

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Introduction: Ca2+ signaling in fibroblasts would be one of the important mediators of lung fibrosis. This study investigated the relationship between calcium channel blocker usage and the risk of developing interstitial lung disease and idiopathic pulmonary fibrosis.

Material And Methods: This cohort study used data from the Korean National Health Screening Cohort spanned from January 1, 2004, to December 31, 2015.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!