Patients with chronic kidney disease (CKD) have signs of genomic instability and, as a consequence, extensive genetic damage, possibly due to accumulation of uraemic toxins, oxidative stress mediators and other endogenous substances with genotoxic properties. We explored factors associated with the presence and background levels of genetic damage in CKD. A cross-sectional study was performed in 91 CKD patients including pre-dialysis (CKD patients; n = 23) and patients undergoing peritoneal dialysis (PD; n = 33) or haemodialysis (HD; n = 35) and with 61 healthy subjects, divided into two subgroups with the older group being in the age range of the patients, serving as controls. Alkaline comet assay and cytokinesis-block micronucleus assay in peripheral blood lymphocytes were used to determine DNA and chromosome damage, respectively, present in CKD. Markers of oxidative stress [malondialdehyde (MDA), advanced glycation end products (AGEs), thiols, advanced oxidation protein products and 8-hydroxy-2'-deoxyguanosine] and markers of inflammation (C-reactive protein, interleukin-6 and tumour necrosis factor alpha) were also measured. Micronucleus (MN) frequency was significantly higher (P < 0.05) in the CKD group (46±4‰) when compared with the older control (oC) group (27.7±14). A significant increase in MN frequency (P < 0.05) was also seen in PD patients (41.9±14‰) versus the oC group. There was no statistically significant difference for the HD group (29.7±15.6‰; P = NS) versus the oC group. Comet assay data showed a significant increase (P < 0.001) of tail DNA intensity in cells of patients with CKD (15.6±7%) with respect to the total control (TC) group (11±1%). PD patients (14.8±7%) also have a significant increase (P < 0.001) versus the TC group. Again, there was no statistically significant difference for the HD group (12.5±3%) compared with the TC group. Patients with MN values in the upper quartile had increased cholesterol, triglycerides, AGEs and MDA levels and lower albumin levels. Multiple logistic regression analysis showed that male gender, diabetes and treatment modality were independently associated with higher levels of DNA damage. Our results suggest that oxidative stress, diabetes, gender and dialysis modality in CKD patients increased DNA and chromosome damage. To confirm these data, prospective clinical trials need to be performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570793 | PMC |
http://dx.doi.org/10.1093/mutage/ges075 | DOI Listing |
Mol Biol Rep
January 2025
Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!