Lentinan a polysaccharide from medicinal mushroom i.e Lentinus, has been known to have anticancer properties. Telomerase activity is not observed in normal healthy cells, whereas in cancerous cells telomerase expression is high. Telomerase represents a promising cancer therapeutic target. We investigated the inhibitory effect of lentinan on telomerase reverse transcriptase gene (hTERT) which is essential for telomerase activity. To assess the transcriptional effect, DLD -1 cancer cells were cultured in the presence of various concentrations of lentinan. TRAP assay, RT-PCR analysis were performed to find telomerase activity and hTERT gene expression respectively. Since C-myc is known to regulate hTERT, expression of C-myc was also determined. Culturing cells with lentinan resulted in down regulation of hTERT and C-myc expression. These results indicate that lentinan inhibits telomerase activity by down regulating hTERT expression via suppression of C-myc in cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558165PMC

Publication Analysis

Top Keywords

telomerase activity
16
cancer cells
12
telomerase
8
cells lentinan
8
expression c-myc
8
htert expression
8
cells
6
lentinan
6
expression
5
htert
5

Similar Publications

Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging.

View Article and Find Full Text PDF

Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) are inherited conditions associated with multisystem manifestations. We describe clinical and functional characterisation of a novel TERT variant. Whole-genome sequencing was performed along with single length analysis ().

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!