Sperm chromatin integrity has been being recognized as an important factor in male fertility. During normal fertilization, high quality sperm with intact chromatin are selected through natural selection in journey from vagina to fallopian tube. However, using Assisted Reproductive Techniques, particularly ICSI, the natural selection is bypassed. Therefore sperm with DNA breakage have the opportunity to fertilize the egg which may lead to decreased embryo quality and implantation rate. The aim of this study was to evaluate the effects of sperm chromatin integrity on ICSI outcomes. A total of 200 semen samples were collected from couples undergoing ICSI and were analyzed according to WHO criteria. Each sample was evaluated for sperm chromatin integrity using four cytochemical assays and semen processing by swim up method. The ICSI was carried out according to a long-term pituitary down-regulation protocol. The correlation between sperm parameters, sperm chromatin integrity and ICSI outcomes (fertilization rate and embryo quality) was examined. The mean number of oocyte, fertilization rate and cleavage embryos per cycles was 7.5±5.0, 74.06%±25 and 5.4±3.6, respectively. There was not significant correlation between the results of chromatin assays (AO, AB, TB, and CMA3) and fertilization outcomes following ICSI. The fertilization rate was significantly higher for a group with less than 10% chromatin abnormality (p<0.05). Sperm chromatin integrity is essential for successful fertilization, embryo development and normal pregnancy. A protamine deficiency appeared to affect fertilization rate and embryo quality. However, the presence of confounding factors such as selection of spermatozoa according to normal morphology may influence the effect of sperm chromatin status on ICSI outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558139 | PMC |
Nucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFInt J Reprod Biomed
November 2024
Histomorphometry and Stereology Research Center, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: In infertility clinics, long-time preserving high-quality spermatozoa is a challenging problem.
Objective: The present study aimed to prolong preserving of the human spermatozoa by adding pentoxifylline (PT) and L-carnitine (LC) without using high-cost freezing techniques.
Materials And Methods: In this experimental study, semen samples of 26 normozoospermia men aged between 28-34 yr, were firstly prepared using the swim-up technique, and each sample was divided into the following 3 aliquots: untreated control group, the LC, and PT-treated groups.
Genes (Basel)
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran.
Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.
View Article and Find Full Text PDFJ Reprod Infertil
January 2024
Department of Histology and Embryology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey.
Background: The newest NOX isoform, NOX5, has been found in mammalian spermatozoa. Many physiological and pathological situations in spermatozoa are mediated by reactive oxygen species (ROS). NOX5 is the main source of ROS in spermatozoa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!