As new insights into the complexities of endochondral fracture repair emerge, the temporal role of osteoclast activity remains ambiguous. With numerous antiresorptive agents available to treat bone disease, understanding their impact on bone repair is vital. Further, in light of recent work suggesting osteoclast activity may not be necessary during early endochondral fracture union, we hypothesize instead a pivotal role of matrix metalloproteinase (MMP) secreting cells in driving this process. Although the role of MMPs in fracture healing has been examined, no directly comparative experiments exist. We examined a number of antiresorptive treatments to either block osteoclast activity, including the potent bisphosphonates zoledronic acid (ZA) and clodronate (CLOD), which work via differing mechanisms, or antagonize osteoclastogenesis with recombinant OPG (HuOPG-Fc), comparing these directly to an inhibitor of MMP activity (MMI270). Endochondral ossification to union occurred normally in all antiresorptive groups. In contrast, MMP inhibition greatly impaired endochondral union, significantly delaying cartilage callus removal. MMP inhibition also produced smaller, denser hard calluses. Hard callus remodeling was, as expected, delayed with ZA, CLOD, and OPG treatment at 4 and 6 weeks, resulting in larger, more mineralized calluses at 6 weeks. As a result of reduced hard callus turnover, bone formation was reduced with antiresorptive agents at these time points. These results confirm that the achievement of endochondral fracture union occurs independently of osteoclast activity. Alternatively, MMP secretion by invading cells is obligatory to endochondral union. This study provides new insight into cellular contributions to bone repair and may abate concerns regarding antiresorptive therapies impeding initial fracture union.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.1889 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Rehabilitation, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China.
Background: Osteoporosis (OP) frequently occurs in post-menopausal women, increasing the risk of fracture. Early screening OP could improve the prevention of fractures.This study focused on the significance of miR-208a-3p in diagnosing OP and development regulation, aiming to explore a novel biomarker and therapeutic target for OP.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Orthopaedic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.
View Article and Find Full Text PDFNutrients
January 2025
College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!