Hypoxia-induced autophagy in endothelial cells: a double-edged sword in the progression of infantile haemangioma?

Cardiovasc Res

The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China.

Published: June 2013

Aims: The aim of this study was to investigate the precise role of hypoxia-induced autophagy in endothelial cells, and whether it contributes to the distinctive progression of infantile haemangioma (IH).

Methods And Results: The endothelial cells (EOMA and HUVECs) were cultured under hypoxic conditions for indicated times (0-72 h). The results showed that short exposure of the endothelial cells to hypoxia resulted in increased cell survival and proliferation, accompanied by occurrence of autophagy. Prolonged hypoxia-induced autophagy, correlating with increased cell death, was also detected afterwards. Correspondingly, autophagy inhibition prevented the enhanced cell survival and proliferation capacity, advanced the occurrence of cell-death in early hypoxic stage, and meanwhile attenuated the ability of prolonged hypoxia in cell-death induction. Moreover, our data demonstrated that the functional transformation of hypoxia-induced autophagy, pro-survival to pro-death, was rigorously regulated by the switch between hypoxia-inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) pathways. Importantly, we also revealed the activation levels of HIF-1α and mTOR, as well as the autophagy status during the progression of IH.

Conclusion: This study unmasks the functional switch between HIF-1α and mTOR in regulating hypoxia-induced autophagy in endothelial cells and, more importantly, indicates its potential role in the progression of IH.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvt035DOI Listing

Publication Analysis

Top Keywords

hypoxia-induced autophagy
20
endothelial cells
20
autophagy endothelial
12
progression infantile
8
increased cell
8
cell survival
8
survival proliferation
8
hif-1α mtor
8
autophagy
7
hypoxia-induced
5

Similar Publications

Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.

View Article and Find Full Text PDF

Objective: Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion.

Methods: Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control.

View Article and Find Full Text PDF

A novel pyridine-2-one AMPK inhibitor: Discovery, mechanism, and in vivo evaluation in a hypoxic pulmonary arterial hypertension rat model.

Eur J Med Chem

January 2025

Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China. Electronic address:

AMP-activated protein kinase (AMPK), a heterotrimeric serine-threonine kinase, has been identified as a promising target for regulating vascular remodeling in pulmonary arterial hypertension (PAH) due to its capacity to promote proliferation, autophagy, and anti-apoptosis in pulmonary artery smooth muscle cells (PASMCs). However, research into AMPK inhibitors is very limited. Herein, a virtual screening strategy was employed to identify CHEMBL3780091 as a lead compound for a series of novel AMPK inhibitors by exploring the structure-activity relationship around a specific pyridine-2-one scaffold.

View Article and Find Full Text PDF

Cancer continues to pose a formidable challenge in global health due to its incidence and increasing resistance to conventional therapies. A key factor driving this resistance is tumor hypoxia, characterized by reduced oxygen levels within cancer cells. This hypoxic environment triggers a variety of adaptive mechanisms, significantly compromising the efficacy of cancer treatments.

View Article and Find Full Text PDF

Hypoxia is a common feature of solid tumors that has previously been linked to resistance to radiotherapy and chemotherapy, and more recently to immunotherapy. In particular, hypoxic tumors exclude T cells and inhibit their activity, suggesting that tumor cells acquire a mechanism to evade T-cell recognition and killing. Our analysis of hypoxic tumors indicates that hypoxia downregulates the expression of MHC class I and its bound peptides (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!