Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(75)80792-7DOI Listing

Publication Analysis

Top Keywords

oxygen dissociation
4
dissociation curve
4
curve haemoglobin
4
haemoglobin portland
4
oxygen
1
curve
1
haemoglobin
1
portland
1

Similar Publications

Phase-Engineered ZrO for Tuning Catalytic Oxidation of Dichloromethane Over W/ZrO:Zr-Doped WO Clusters and the Hydrolysis-Oxidation Mechanism.

Environ Sci Technol

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

Catalytic elimination through an oxidative decomposition pathway is the most promising candidate for the purification of chlorinated volatile organic compound (CVOC) pollutants, but the complicated mechanisms and the formation pathways of hydrogenated byproducts still need to be clearly revealed. Herein, W/ZrO, as a structure-tunable catalyst, is used to catalytically oxidize dichloromethane (DCM) and clarify the formation pathway of monochloromethane (MCM). Crystal engineering of ZrO tailors surface WO species; practically, the predominant Zr-WO clusters and crystalline WO can be obtained on monoclinic (m-ZrO) and tetragonal (t-ZrO) phases.

View Article and Find Full Text PDF

Glycerol Adsorption on TiO Surfaces: A Systematic Periodic DFT Study.

ChemistryOpen

January 2025

Facultad de Ciencias Básicas, Universidad de Medellín, 050026, Medellín, Colombia.

Conversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO at the Density Functional Theory level.

View Article and Find Full Text PDF

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

Energetic and Electronic Properties of AcX and LaX (X = O and F).

J Phys Chem A

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.

The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.

View Article and Find Full Text PDF

The copolymerization of ethylene with polar monomers presents a significant challenge. While palladium catalysts have shown promise, nickel catalysts are more economical but suffer from poor activity. Previous studies suggest that the isomerization step involved in the nickel-catalyzed polymerization may influence the catalyst activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!