This article is a comparative study of white matter projections from ventral prefrontal cortex (vPFC) between human and macaque brains. We test whether the organizational rules that vPFC connections follow in macaques are preserved in humans. These rules concern the trajectories of some of the white matter projections from vPFC and how the position of regions in the vPFC dictate the trajectories of their projections in the white matter. To address this question, we present a novel approach that combines direct tracer measurements of entire white matter trajectories in macaque monkeys with diffusion MRI tractography of both macaques and humans. The approach allows us to provide explicit validation of diffusion tractography and transfer tractography strategies across species to test the extent to which inferences from macaques can be applied to human neuroanatomy. Apart from one exception, we found a remarkable overlap between the two techniques in the macaque. Furthermore, the organizational principles followed by vPFC tracts in macaques are preserved in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602794 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2457-12.2013 | DOI Listing |
Biol Psychiatry
January 2025
MIND Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.
Background: Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, comprised of the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information.
View Article and Find Full Text PDFMed Image Anal
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200040, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai 200040, China; Department of Radiology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:
The anisotropic mechanical properties of fiber-embedded biological tissues are essential for understanding their development, aging, disease progression, and response to therapy. However, accurate and fast assessment of mechanical anisotropy in vivo using elastography remains challenging. To address the dilemma of achieving both accuracy and efficiency in this inverse problem involving complex wave equations, we propose a computational framework that utilizes the traveling wave expansion model.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China.
Background: Carotid endarterectomy (CEA) is widely used to treat carotid artery stenosis (CAS). However, the effects of CEA on unilateral CAS-induced cognitive impairment and the underlying mechanism remain poorly understood.
Methods And Results: Thirteen patients diagnosed with unilateral severe CAS underwent pre- and post-CEA assessments, including fluoro-2-deoxy-d-glucose positron emission tomography/magnetic resonance imaging, cognitive assessments, and routine blood tests before and after CEA.
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
Biomed Opt Express
January 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!