Lipopolysaccharide (LPS) is an important structural component of the outer cell membrane complex of gram negative microorganisms. Its causative role in gram negative bacteria-induced diseases and broad applications in different kinds of cell stimulation experiments provided a conceptual basis for studies directed at the isolation, purification, and detailed chemical characterization of LPS. The main problem with LPS purification protocols is the contamination of the end product with nucleic acids and proteins in variable proportions which could potentially interfere with downstream applications. In this study, a simple procedure for purification of LPS from Escherichia coli (E.coli) and Salmonella typhi (S.typhi) with high purity and very low contaminating nucleic acids and proteins based on the hot phenol-water extraction protocol has been introduced. The purity of extracted LPS was evaluated by silver and coomassie blue staining of SDS-PAGE gels and HPLC analysis. Limulus Amebocyte Lysate (LAL) coagulation activity and rabbit pyrogen assay were exploited to monitor the functionality of purified LPS. The results showed that DNase and RNase treatment of the sample is essential after the sonication step to eliminate nucleic acid contamination in the LPS fraction. Silver staining demonstrated ladder pattern which is characteristic of LPS. No contaminating protein was found as assessed by coomassie blue staining. HPLC fractionation revealed high degree of purity comparable with commercial LPS. Parenteral administration of purified LPS resulted in substantial increase of rabbits' body temperature (mean: 1.45°C). LAL coagulation assay confirmed the functional activity of the purified LPS. In conclusion, the protocol presented here could be employed for isolation of LPS with high purity and functional activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558174 | PMC |
CNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Excess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.
View Article and Find Full Text PDFUnlabelled: Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number.
View Article and Find Full Text PDFDisorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.
View Article and Find Full Text PDFFront Immunol
December 2024
The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!