Background: The aim of the conducted studies was to evaluate the effect of 4-methylpyrazole, increasingly used in detoxifying treatments after ethylene glycol poisoning, on the activity of some antioxidant enzymes and lipid peroxidation formation in the liver of rats after experimental co-exposure to ethylene glycol and ethyl alcohol.
Methods: The trials were conducted on adult male Wistar rats. Ethylene glycol (EG) at the dose of 3.83 g/kg bw and ethyl alcohol (EA) at the dose of 1 g/kg bw were administered po, and 4-methylpyrazole (4-MP) at the dose of 0.01 g/kg bw was administered ip. Parameters of antioxidant balance were evaluated in hepatic cytosol, including the activity of the following enzymes: glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and lipid peroxidation level (TBARS).
Results: The results suggest that evaluation of the effects of administrated 4-MP after co-exposure to EG and EA in the liver revealed statistically significant changes on antioxidant enzyme system and malondialdehyde formation.
Conclusion: The changes in biomarkers activity indicate a greater production of free radicals which exceeds the capability of antioxidant system, appearing with oxidative stress in the group of animals treated by 4-MP combined with EG and EA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1734-1140(12)70952-0 | DOI Listing |
Metab Eng Commun
June 2025
Department of Chemical Engineering, University of Waterloo, Canada.
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes.
View Article and Find Full Text PDFDes Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Istanbul, Maslak, 34469, Turkey.
A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!