Background: Alström Syndrome (AS) is a rare ciliopathy characterized by cone-rod retinal dystrophy, sensorineural hearing loss, obesity, type 2 diabetes mellitus and cardiomyopathy. Most patients do not present with neurological issues and demonstrate normal intelligence, although delayed psychomotor development and psychiatric disorders have been reported. To date, brain Magnetic Resonance Imaging (MRI) abnormalities in AS have not been explored.
Methods: We investigated structural brain changes in 12 genetically proven AS patients (mean-age 22 years; range: 6-45, 6 females) and 19 matched healthy and positive controls (mean-age 23 years; range: 6-43; 12 females) using conventional MRI, Voxel-Based Morphometry (VBM) and Diffusion Tensor Imaging (DTI).
Results: 6/12 AS patients presented with brain abnormalities such as ventricular enlargement (4/12), periventricular white matter abnormalities (3/12) and lacune-like lesions (1/12); all patients older than 30 years had vascular-like lesions. VBM detected grey and white matter volume reduction in AS patients, especially in the posterior regions. DTI revealed significant fractional anisotropy decrease and radial diffusivity increase in the supratentorial white matter, also diffusely involving those regions that appeared normal on conventional imaging. On the contrary, axial and mean diffusivity did not differ from controls except in the fornix.
Conclusions: Brain involvement in Alström syndrome is not uncommon. Early vascular-like lesions, gray and white matter atrophy, mostly involving the posterior regions, and diffuse supratentorial white matter derangement suggest a role of cilia in endothelial cell and oligodendrocyte function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584911 | PMC |
http://dx.doi.org/10.1186/1750-1172-8-24 | DOI Listing |
Ann Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.
Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.
Magn Reson Med
January 2025
Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France.
Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.
Cogn Affect Behav Neurosci
January 2025
Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.
Z Med Phys
January 2025
Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.
Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!