The ground triplet state and lowest singlet state of formylmethylene have been proposed as important intermediates in the Wolff rearrangement of α-diazo ketones into ketenes. The ground triplet state of formylmethylene has been examined experimentally, but the lowest singlet state has yet to be observed. We predict equilibrium geometries, energies, bonding, dipole moments, and harmonic vibrational frequencies for these two lowest states of formylmethylene at the cc-pVQZ CCSD(T) level of theory. The singlet-triplet energy difference [ΔE(S-T)] is quite sensitive to the level of theory. The highly accurate cc-pVQZ CCSD(T) level of theory yields the most reliable result of only 2.0 kcal mol(-1). An estimate based on the experimentally characterized CH2 molecule yields ΔE(S-T) = 1.27 kcal mol(-1). In addition, accurate quartic force fields have been determined at the cc-pVTZ CCSD(T) level of theory. Fundamental vibrational frequencies, anharmonic constants, and vibration-rotation coupling constants were determined using vibrational second-order perturbation theory (VPT2). Our results should aid in experimental detection and characterization of the lowest singlet state of formylmethylene, which is highly desirable for better understanding the mechanism of the Wolff rearrangement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp311681u | DOI Listing |
Molecules
January 2025
Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance.
View Article and Find Full Text PDFMolecules
January 2025
Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia.
Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA.
The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka, Russia.
Recently (Photochem Photobiol. 2023;100:1277-1289. doi:10.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of St Andrews, North Haugh, Fife, St Andrews KY16 9ST, United Kingdom.
Two synchrotron-based studies on 4H-pyran-4-thione, photoelectron spectroscopy and vacuum ultraviolet (VUV) absorption spectra were performed. A highly resolved structure was observed in the photoelectron spectrum (PES), in contrast to an earlier PES study, where little structure was observed. The sequence of ionic states was determined using configuration interaction and coupled cluster methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!