Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 belong to the perovskite-based A(n)B(n)O(3n-2) homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell a(p) as a(p)√2 × a(p) × na(p)√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(101)p crystallographic shear (CS) planes. The CS operation results in (101)p-shaped perovskite blocks with a thickness of (n - 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb(1.5)Ba(2.5)Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned Fe-Fe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 A(n)Fe(n)O(3n-2) (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623-632 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic3026667DOI Listing

Publication Analysis

Top Keywords

perovskite blocks
20
pb2ba2bife5o13 pb15ba25bi2fe6o16
16
phase transition
8
ordered state
8
perovskite
7
pb2ba2bife5o13
5
pb15ba25bi2fe6o16
5
blocks
5
structural magnetic
4
magnetic phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!