Novel polyketides, citreoviripyrone A (1) and B (2), known citreomontanin (3), and (-)-citreoviridin (4) were isolated from the mycelium of the endophytic fungus. The endophytic fungus, which belongs to the genus Penicillium, was separated from surface-sterilized healthy leaves of Catharanthus roseus. The structures of 1 and 2 were determined on the basis of NMR data, and 1 was characterized as an α-pyrone polyketide featuring bicyclo[4.2.0]octadiene. The biomimetic synthesis of 1 and 2 from 3 elucidated a plausible biosynthetic pathway. Both Zn(II)-type and NAD(+)-dependent histone deacetylase inhibitors significantly enhanced the production of 1 and 3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol303506t | DOI Listing |
J Mater Chem B
January 2025
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea.
Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).
Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.
Anal Chim Acta
February 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China. Electronic address:
Backgroud: Biomimetic nanoplatforms based on membrane coating strategies have received increasing attention in the field of medical research. However, it cannot perform biomedical imaging screening, which is essential for real-time identification. As a rich source of new drug discovery, traditional Chinese medicine (TCM) has made important contributions to the treatment of many diseases.
View Article and Find Full Text PDFJ Control Release
January 2025
NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China. Electronic address:
Metabolic reprogramming within the tumor microenvironment poses a significant obstacle to the therapeutic efficacy of antitumor immunity. Here, inspired by the diverse programme of cholesterol metabolism between tumor and immune cells, a biocompatible carboxy-modified cyclodextrin carrier equipped with a biomimetic surface was developed to encapsulate FX11 and Avasimibe (RM-CDC@FX11&Ava) for synergistic antitumor metabolic therapy and immunotherapy. Through the manipulation of calcium levels using poly-carboxylic compounds to initiate cholesterol biosynthesis, RM-CDC@FX11&Ava dynamically regulates glycolysis and blocks cholesterol esterification to navigate metabolic reprogramming.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, 2005 Huhu Rd, Shanghai, CHINA.
All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!