The usually negative, but variable electrical potential (ψ0) at the cell membrane (CM) surface influences the surface activities of free ions and the electrical driving force for the transport of ions across the CM. The rhizotoxic effects and uptake of Zn(2+) and Co(2+) singly and in binary mixture in wheat ( Triticum aestivum L.) at three pH values (4.5, 5.5, or 6.1) were examined in terms of the free ion activities of Zn(2+), Co(2+), and H(+) at the CM surface (these ions are denoted {M(n+)}(0)). Toxicity and uptake of Zn(2+) or Co(2+) singly to roots were better correlated with {M(2+)}(0) than with their bulk-phase activities. Studies of toxicant interactions using the electrostatic approach and a response-multiplication model for toxicant mixtures indicated that {Co(2+)}(0) significantly enhanced the toxicity of {Zn(2+)}(0), but {Zn(2+)}(0) did not significantly affect the toxicity of {Co(2+)}(0). {H(+)}(0) substantially enhanced the toxicity of both metal ions. Taking ψo into account improved the correspondence (denoted r(2)) between observed and predicted uptake of both Zn(2+) and Co(2+), and each inhibited the uptake of the other. Results showed that r(2) increased from 0.776 to 0.936 for Zn uptake and improved from 0.805 to 0.951 for Co uptake. Thus electrostatic models for metal toxicity and uptake proved superior to models incorporating only bulk-phase activities of ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es3022107 | DOI Listing |
J Environ Manage
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:
Polybutylene succinate (PBS), a biodegradable plastic, can be used as an alternative to traditional plastics to effectively solve the growing plastic pollution. Although PBS is theoretically completely biodegradable, slow degradation remains a problem in practical applications, leading to the possibility of environmental pollution. In this study, after the PBS degradation ability of the fungus Paraphoma chrysanthemicola was determined, a P.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemistry, UFU, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
We present the synthesis of metal oxide coordination networks based on Preyssler-type polyoxoanions ([NaPWO] and [NaPMoWO]) bridged with metal-aquo complexes ([M(HO)], M = Co, Ni, Zn, Y), induced by electrochemical reduction. Networks bridged with first-row transition metals are isostructural with a previously reported Co-bridged structure, while the Y-bridged structure is new. All networks feature an uncommon binding motif of the metal cation to the oxygen atoms at cap positions, which we hypothesize is due to increased electron density at the cap upon reduction.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!