Intrinsic polarization of ferroelectrics (FE) helps separate photon-generated charge carriers thus enhances photovoltaic effects. However, traditional FE with transition-metal cations (M) of d⁰ electron in MO₆ network typically has a band gap (E(g)) exceeding 3.0 eV. Although a smaller E(g) (2.6 eV) can be obtained in multiferroic BiFeO₃, the value is still too high for optimal solar energy applications. Computational "materials genome" searches have predicted several exotic MO₆ FE with E(g) < 2.0 eV, all thus far unconfirmed because of synthesis difficulties. Here we report a new FE compound with MO₄ tetrahedral network, KBiFe₂O₅, which features narrow E(g) (1.6 eV), high Curie temperature (T(c) ~ 780 K) and robust magnetic and photoelectric activities. The high photovoltage (8.8 V) and photocurrent density (15 μA/cm²) were obtained, which is comparable to the reported BiFeO₃. This finding may open a new avenue to discovering and designing optimal FE compounds for solar energy applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569630 | PMC |
http://dx.doi.org/10.1038/srep01265 | DOI Listing |
Sci Rep
January 2025
Saint Petersburg State University, St. Petersburg, 198504, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia.
This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CNR-IPCF, Institute for Chemical-Physical Processes Messina, 98158 Messina, Italy.
Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Instituto Politécnico Nacional ESIQIE, Mexico City 07700, Mexico.
The synthesis of ethylamine-based perovskites has emerged to attempt to replace the lead in lead-based perovskites for the alkaline earth elements barium and strontium, introducing chloride halide to prepare the perovskites in solar cell technology. X-ray diffraction studies were conducted, and EXPO2014 software was utilized to resolve the structure. Chemical characterization was performed using Fourier transform infrared spectroscopy, photophysical properties were analyzed through ultraviolet-visible spectroscopy, and photoluminescence properties were determined to confirm the perovskite characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!