Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex can be used for real-time device control in paralyzed individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566209PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055344PLOS

Publication Analysis

Top Keywords

sensorimotor cortex
12
individual tetraplegia
8
ecog signals
8
signals recorded
8
electrocorticographic brain
4
brain interface
4
interface individual
4
tetraplegia brain-computer
4
brain-computer interface
4
interface bci
4

Similar Publications

Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study.

View Article and Find Full Text PDF

Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.

View Article and Find Full Text PDF

Introduction: The vergence neural system was stimulated to dissect the afferent and efferent components of symmetrical vergence eye movement step responses. The hypothesis tested was whether the afferent regions of interest would differ from the efferent regions to serve as comparative data for future clinical patient population studies.

Methods: Thirty binocularly normal participants participated in an oculomotor symmetrical vergence step block task within a functional MRI experiment compared to a similar sensory task where the participants did not elicit vergence eye movements.

View Article and Find Full Text PDF

We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.

View Article and Find Full Text PDF

Treadmill exercise prevents stress-induced anxiety-like behaviors via enhancing the excitatory input from the primary motor cortex to the thalamocortical circuit.

Nat Commun

January 2025

Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.

Physical exercise effectively prevents anxiety disorders caused by environmental stress. The neural circuitry mechanism, however, remains incomplete. Here, we identified a previously unrecognized pathway originating from the primary motor cortex (M1) to medial prefrontal cortex (mPFC) via the ventromedial thalamic (VM) nuclei in male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!