Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interactions and the present work focused on the solitary endoparasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae Aphidiidae), an efficient biological control agent commercially used against aphids such as the potato aphid Macrosiphum euphorbiae Thomas (Sternorrhyncha: Aphididae). Contrary to previous studies using heat shocks at extreme temperatures, we evaluated the effects of mild heat stresses by transferring young parasitoid adults from the constant temperature of 20°C to either a warm (25°C) or hot (28°C) temperature, for either 1 h or 48 h. Such treatments are consistent with situations commonly experienced by parasitoids when moved from their rearing conditions to greenhouses or field conditions. The effects were evaluated both on the heat stressed A. ervi adults (G0) (immediate effects) and on their first generation (G1) progeny (trans-generational effects). G0 wasps' mortality was significantly affected by the temperature in interaction with the duration of the stress. Longevity of G0 wasps surviving the heat stress was negatively affected by the temperature and females lived longer than males. Heat stress applied to A. ervi parents also had consequences on their G1 progeny whose developmental time, rates of mummification and percentage of parasitoid completing total development were negatively affected. Surprisingly, the egg load at emergence of the G1 female progeny was increased when their mothers had been submitted to a mild heat stress of 25°C or 28°C. These results clearly demonstrate trans-generational phenotypic plasticity, showing that adaptation to thermal stresses may be achieved via maternal effects. This study also sheds light on the complexity of insect responses and underlying mechanisms to fluctuating conditions in their natural environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566165 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054306 | PLOS |
PLoS One
January 2025
Institute for Human Development, Aga Khan University, Nairobi, Kenya.
Introduction: Children growing up in arid and semi-arid regions of Sub-Saharan Africa (SSA) face heightened risks, often resulting in poor developmental outcomes. In Kenya, the arid and semi-arid lands (ASAL) exhibit the lowest health and developmental indicators among children. Despite these risks, some children grow up successfully and overcome the challenges.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.
View Article and Find Full Text PDFSci China Life Sci
January 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!