Huntington disease (HD) is associated with early and severe damage to the basal ganglia and particularly the striatum. We investigated cortico-striatal connectivity modifications occurring in HD patients using a novel approach which focuses on the projection of the connectivity profile of the basal ganglia onto the cortex. This approach consists in computing, for each subcortical structure, surface connectivity measures representing its strength of connections to the cortex and comparing these measures across groups. In this study, we focused on Huntington disease as an application of this new approach. First, surface cortico-striatal connectivity measures of a group of healthy subjects were averaged in order to infer the "normal" connectivity profile of the striatum to the cortex. Second, a statistical analysis was performed from the surface connectivity measures of healthy subjects and HD patients in order to detect the cortical gyri presenting altered cortico-striatal connectivity in HD. Lastly, percentage differences of connectivity between healthy subjects and patients were inferred, for each nucleus of the striatum, from the connectivity measures of the cortical gyri presenting a significant connectivity difference between the two groups. These percentage differences characterize the axonal disruptions between the striatum and the cortex occurring in HD. We found selective region-specific degeneration of cortical connections predominating for associative and primary sensorimotor connections and with relative preservation of limbic connections. Our method can be used to infer novel connectivity-based markers of HD pathological process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566172PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053135PLOS

Publication Analysis

Top Keywords

cortico-striatal connectivity
16
connectivity measures
16
huntington disease
12
healthy subjects
12
connectivity
11
basal ganglia
8
connectivity profile
8
surface connectivity
8
striatum cortex
8
subjects patients
8

Similar Publications

The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in male and female macaque monkeys.

View Article and Find Full Text PDF

Traumatic brain injury, alone or with striatal hemorrhage-like extension, transiently decreases GABA and glutamate levels along motor deficits in the rat striatum: an in vivo study.

Neurosci Lett

January 2025

División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico. Electronic address:

The cerebral cortex is connected to the striatum via the axons of the pyramidal glutamatergic neurons, and this pathway is intimately involved in motor function. In the striatum, glutamatergic afferents initiate the activity of GABAergic medium spiny neurons. This study addressed whether traumatic brain injury (TBI) affects GABA and glutamate extracellular levels in the dorsal striatum as an indicator of effects on the cortico-striatal pathway, in rats with motor deficits and recovered animals.

View Article and Find Full Text PDF

Bilateral chemogenetic activation of intratelencephalic neurons in motor cortex reduces spontaneous locomotor activity in mice.

Neurobiol Dis

January 2025

Danish Research Centre for Magnetic Resonance (DRCMR), Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Intratelencephalic neurons are a crucial class of cortical principal neurons that heavily innervate the striatum and cortical areas bilaterally. Their extensive cortico-cortical and cortico-striatal connectivity enables sensorimotor integration within the telencephalon, but their role in motor control remains poorly understood. Here, we used a chemogenetic approach to explore the role of intratelencephalic neurons in spontaneous locomotor activity.

View Article and Find Full Text PDF

Successful motor skill acquisition requires the dynamic interaction of multiple brain regions, with the striatum playing a critical role in this network. Animal studies suggest that dopaminergic mechanisms are involved in the regulation of motor learning-associated striatal plasticity. In humans, however, the contribution of nigrostriatal dopaminergic transmission to motor learning remains elusive beyond its well-characterized role in initiation and fluent execution of movements.

View Article and Find Full Text PDF

Background: Major psychiatric disorders (MPDs) are delineated by distinct clinical features. However, overlapping symptoms and transdiagnostic effectiveness of medications have challenged the traditional diagnostic categorisation. We investigate if there are shared and illness-specific disruptions in the regional functional efficiency (RFE) of the brain across these disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!