Chronic lymphocytic leukemia (CLL) is a disease state which frequently responds to alkylating agent chemotherapy but ultimately becomes refractory through acquired resistance mechanisms. In the present study, we have examined the expression of glutathione S-transferases (GST) in both CLL and normal control lymphocytes, as these enzymes have been implicated in mechanisms of natural and acquired resistance. Lymphocyte GST was purified from samples by high-pressure liquid affinity chromatography, and subunits were identified by two-dimensional gel electrophoresis and immunoblotting by using polyclonal antibodies specific for individual subunits. Analysis of CLL lymphocyte GST activity using the general substrate 1-chloro-2,4-dinitrobenzene showed a statistically significant 2-fold increase in cells from chlorambucil-resistant patients over those from untreated patients and normal individuals. Furthermore, chlorambucil therapy was seen to cause a 1.3- to 1.5-fold elevation of enzyme activity in three previously drug-naive patients. Analysis of GST isozyme subunits indicated that 95% of the CLL patients examined were positive for the pi isozyme, and this appeared quantitatively to be the major isozyme present. The alpha and mu isozymes were also expressed in 63 and 53% of the patients, respectively. Examination of control lymphocytes, as well as separated B- and T-cell subpopulations, yielded similar results. The present study indicates that a high degree of interindividual variation occurs and that the pattern of CLL lymphocyte GST expression differs from that of other tumor tissues. While there were no obvious correlations between the disease state or stage and isozymes expressed, the quantitative increase in GST activity in chlorambucil-resistant CLL patients may be of relevance to the overall resistant phenotype.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lymphocyte gst
12
chronic lymphocytic
8
lymphocytic leukemia
8
disease state
8
acquired resistance
8
control lymphocytes
8
cll lymphocyte
8
gst activity
8
cll patients
8
isozymes expressed
8

Similar Publications

Introduction: Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.

View Article and Find Full Text PDF

Background: Lymphatic Filariasis (LF) is a neglected tropical disease affecting more than 882 million people in 44 countries of the world. A multi-epitope prophylactic/therapeutic vaccination targeting filarial defense proteins would be invaluable to achieve the current LF elimination goal.

Method: Two groups of proteins, namely Anti-oxidant (AO) and Heat shock proteins (HSPs), have been implicated in the effective survival of the filarial parasites in their hosts.

View Article and Find Full Text PDF

SKP2 inhibition activates tumor cell-intrinsic immunity by inducing DNA replication stress and genomic instability.

Br J Cancer

January 2025

Key Laboratory of Clinical Precision Pharmacy of Guangdong Higher Education Institutes, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510699, China.

Background: S-phase kinase-associated protein 2 (SKP2) is a typical oncogene aberrantly overexpressing in a variety of cancer types, but it remains elusive whether SKP2 regulates the antitumor immunity of triple-negative breast cancer.

Methods: The efficacy of anti-PD-1 was evaluated in the orthotopic xenografts of immunocompetent mice models. The infiltration of cytotoxic T cells in tumor microenvironment(TME) were assessed by immunofluorescence staining.

View Article and Find Full Text PDF

Identification of three novel linear B-cell epitopes on VP7 of African horse sickness virus using monoclonal antibodies.

Vet Microbiol

November 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China. Electronic address:

Article Synopsis
  • * The research involved creating a recombinant version of the VP7 protein in E. coli and identifying four monoclonal antibodies that recognize specific B-cell epitopes on this protein through various immunological methods.
  • * Findings revealed conserved epitopes among different AHSV serotypes, which could aid in developing better diagnostic tools and potential vaccine strategies against AHS.
View Article and Find Full Text PDF

Screening and identification of linear B-cell epitopes on structural proteins of African Swine Fever Virus.

Virus Res

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, 730046, PR China. Electronic address:

This study aims to screen and identify linear B-cell epitopes on the structural proteins of African Swine Fever Virus (ASFV) to assist in the development of peptide-based vaccines. In experiments, 66 peptides of 12 structural proteins of ASFV were predicted as potential linear B-cell epitopes using bioinformatics tools and were designed; the potential epitope proteins carried the GST tag were expressed, purified, and subjected to antigenicity analysis with porcine antiserum against ASFV, and further identified based on their immunogenicity in mice. A total of 22 potential linear B-cell epitopes showed immunoreactivity and immunogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!