Mechanism of chronic dietary iron overload-induced liver damage in mice.

Mol Med Rep

State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China.

Published: April 2013

Chronic iron overload may result in hepatic fibrosis and even neoplastic transformation due to a burst of reactive oxygen species (ROS). Mitochondria have been proposed to be important in the production of ROS. The purpose of this study was to investigate the role of the mitochondrial permeability transition pore (mPTP) in the burst of ROS, and to clarify the mechanism whereby ROS induced by iron overload results in hepatic damage. It has been demonstrated that when ferrocene-induced iron-overloaded mice were fed the cyclosporin A (CsA), a specific inhibitor of the mPTP, diet (10 mg/kg/day) for 50 days, liver-to-body weight ratio, serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), ROS production, mitochondrial swelling, loss of mitochondrial membrane potential (Δψ) and hepatocyte apoptosis decreased. However, the total antioxidant status, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase activities, increased. The protective effect of CsA on the liver of iron-overloaded mice may be due to inhibition of the ROS burst and a successive antioxidant effect. To the best of our knowledge, these data provide the first support for the theory that ROS-induced ROS release (RIRR) may be involved in the burst of ROS in the liver and greatly contribute to the hepatic damage initiated by iron overload.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2013.1316DOI Listing

Publication Analysis

Top Keywords

iron overload
12
ros
8
burst ros
8
hepatic damage
8
iron-overloaded mice
8
mechanism chronic
4
chronic dietary
4
iron
4
dietary iron
4
iron overload-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!