The aim of the present study was to determine whether the treatment of obstructed rat bladders with αlipoic acid (ALA) and silymarin reverses the biochemical and physiological responses to bladder outlet obstruction (BOO). A total of 32 adult Sprague Dawley rats were divided into four groups (n=8 per group): sham (placebo surgery) animals with no treatment (group 1); control animals with surgically induced BOO (group 2); obstructed rats treated with ALA (group 3); and obstructed rats treated with silymarin (group 4). Histological evaluation, bladder weights, collagen structure, TdT-mediated biotin nick end-labeling (TUNEL), inducible nitric oxide sentase (iNOS) mRNA levels, malondialdehyde (MDA) levels and tumor necrosis factor (TNF) levels were investigated. The ALA-treated group had similar bladder weights, collagen levels and TUNEL positivity and decreased iNOS levels compared with the control group, while the silymarin group exhibited further differences. Serum MDA and TNF-α levels were both decreased in the ALA and silymarin groups. ALA treatment reduced the increased oxidative stress and bladder inflammation caused by BOO and may contribute to the protection of bladder function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570162 | PMC |
http://dx.doi.org/10.3892/etm.2012.831 | DOI Listing |
Tissue Eng Part A
January 2025
Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Small, obligately anaerobic strains 13CB8C, 13CB11C, 13CB18C and 13GAM1G were isolated from a faecal sample in a patient with Parkinson's disease with a history of duodenal resection. After conducting a comprehensive polyphasic taxonomic analysis including genomic analysis, we propose the establishment of one new genus and four new species. The novel bacteria are sp.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk.), Pune-411041, Maharashtra, India.
Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.
View Article and Find Full Text PDFRNA Biol
December 2025
Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan.
This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the analyses.
View Article and Find Full Text PDFTree Physiol
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!