Using single-crystal adsorption calorimetry (SCAC) and density functional theory (DFT), the interaction of carbon monoxide on fcc Co{110} is reported for the first time. The results indicate that adsorption is consistent with molecular chemisorption at all coverages. The initial heat of adsorption of 140 kJ mol(-1) is found in the range of heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. DFT adsorption energies are in good agreement with the experimental results, and comparison between SCAC and DFT for CO on other ferromagnetic surfaces is made. The calculated dissociation barrier of 2.03 eV implies that dissociation at 300 K is unlikely even at the lowest coverage. At high coverages during the adsorption-desorption steady state regime, a pre-exponential factor for CO desorption of 1.2 × 10(17) s(-1) is found, implying a localised molecular adsorbed state prior to desorption in contrast to what we found with Ni surfaces. This result highlights the importance of the choice of the pre-exponential factor in evaluating the activation energy for desorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp43836h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!