High-throughput hyperdimensional vertebrate phenotyping.

Nat Commun

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Published: June 2013

Most gene mutations and biologically active molecules cause complex responses in animals that cannot be predicted by cell culture models. Yet animal studies remain too slow and their analyses are often limited to only a few readouts. Here we demonstrate high-throughput optical projection tomography with micrometre resolution and hyperdimensional screening of entire vertebrates in tens of seconds using a simple fluidic system. Hundreds of independent morphological features and complex phenotypes are automatically captured in three dimensions with unprecedented speed and detail in semitransparent zebrafish larvae. By clustering quantitative phenotypic signatures, we can detect and classify even subtle alterations in many biological processes simultaneously. We term our approach hyperdimensional in vivo phenotyping. To illustrate the power of hyperdimensional in vivo phenotyping, we have analysed the effects of several classes of teratogens on cartilage formation using 200 independent morphological measurements, and identified similarities and differences that correlate well with their known mechanisms of actions in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573763PMC
http://dx.doi.org/10.1038/ncomms2475DOI Listing

Publication Analysis

Top Keywords

independent morphological
8
hyperdimensional vivo
8
vivo phenotyping
8
high-throughput hyperdimensional
4
hyperdimensional vertebrate
4
vertebrate phenotyping
4
phenotyping gene
4
gene mutations
4
mutations biologically
4
biologically active
4

Similar Publications

Application of predictive modeling tools for the identification of Ocimum spp. herbal products.

Anal Bioanal Chem

January 2025

Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products.

View Article and Find Full Text PDF

Background: Platelet activation plays a central role in the pathogenesis of acute coronary syndrome (ACS). Platelet morphological parameters, including MPV, PDW, and P-LCR, are emerging as biomarkers for predicting the severity of ACS and prognosis.

Aims: This study aims to assess the relationship between these parameters and coronary severity and to evaluate their predicting adverse outcomes.

View Article and Find Full Text PDF

Objectives: In the last 20 years, we have seen the flourishing of multiple treatments targeting the dorsal root ganglion (DRG) for pain. However, there is concern regarding the variation in the location of the DRG, which could influence the long-term clinical outcomes. The aim of this work was to determine the exact position of the DRG in the spine and propose a pre-surgical planning.

View Article and Find Full Text PDF

Vocal cord nodules (VCNs) can be treated with a variety of therapeutic approaches, with controversy regarding the optimal management. This review provides an overview of the most commonly used management strategies and their outcomes to enhance decision making. We conducted a systematic literature search on PubMed, Web of Science, and Scopus to include relevant original articles published in peer-reviewed journals from inception through April 2024.

View Article and Find Full Text PDF

A phylogenetic assessment of in (, ): introduction of new genera, and the resurrection of .

Fungal Syst Evol

December 2024

Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.

During entomopathogenic fungal surveys conducted in Thailand, 15 specimens tentatively classified under were identified. To gain a comprehensive understanding of their taxonomy, molecular phylogenies using combined LSU, , , and sequence data, together with morphological examination of several spp. from previous studies were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!