Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vitamin E TPGS-functionalized polymeric nanoparticles have been developed as a promising drug delivery platform in recent years. Obtaining reproducible monodisperse TPGS/polymeric nanoparticles with high encapsulation efficiency (EE%) still remains a big challenge. In this study, an inverse-phase nanoprecipitation method was developed to synthesize TPGS-functionalized PLGA nanoparticles (TPNs) for controlled release of paclitaxel (PTX). To take advantages of lipids, a part of TPGS in the TPNs was replaced by lipids. The results showed that with weight ratio of TPGS-to-PLGA of 2-3 and a molar replacement of lecithin ratio of 30%, the PTX-loaded TPNs (PTPNs) and PTX-loaded lipid-containing TPNs (PLTPNs) exhibited controllable and nearly uniform size of 130-150nm and EE% of over 80%. Compared to Taxol(®), both the PTPNs and PLTPNs significantly increased the intracellular uptake and exerted strong inhibitory effect on human lung cancer A549 model cells. Furthermore, a selective accumulation to tumor site and significant antitumor efficacy of TPNs in the A549 lung cancer xenografted nude mice were observed by intravenous administration, especially for the PTPNs group. Our data suggested that the inverse-phase nanoprecipitation method holds great potential for the fabrication of the paclitaxel-loaded TPNs and the TPNs prepared here is a promising controllable delivery system for paclitaxel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2013.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!