A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption of biopolymers on SWCNT: ordered poly(rC) and disordered poly(rI). | LitMetric

Polymer adsorption onto single-walled carbon nanotubes (SWCNTs) depends on its rigidity/flexibility. The adsorption properties of two related homopolynucleotides poly(rI) and poly(rC) but of different rigidities were compared, employing absorption spectroscopy and molecular dynamics simulation. It was shown that adsorption of the poor base stacked poly(rI) onto the nanotube is less effective than that of the strong base stacked poly(rC), the chain of which is of higher rigidity. Analysis of UV absorption spectra of polymer:nanotube suspension at heating until 90 °C, which leads to partial nanotube aggregation because of the weakly bound polymer sliding from the tube surface, revealed that the percent of precipitated nanotubes in suspension with poly(rI) is larger than that in suspension with poly(rC) (16% vs 7%). This fact indicates the higher stability of SWCNT:poly(rC) hybrid in comparison with SWCNT:poly(rI). Less effective adsorption of poly(rI) is confirmed with a weaker hypochromic effect of nanotubes covered with poly(rI) than with poly(rC), which originates from π-π stacking of nitrogen bases with the nanotube surface. Spontaneous adsorption of oligomers on the nanotube simulated by the molecular dynamics showed that oligomer r(I)25 has a weaker energy of binding to the carbon nanotube surface than r(C)25. The oligomer with ordered bases has a tendency to form the stretched conformation along the nanotube, which provides a higher binding energy, while more flexible r(I)25 forms the stable loop spaced away from the nanotube surface, the stability of which is strengthened with H-bonding between bases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp311005yDOI Listing

Publication Analysis

Top Keywords

nanotube surface
12
polyri polyrc
8
molecular dynamics
8
base stacked
8
nanotube
7
adsorption
6
polyri
6
polyrc
5
adsorption biopolymers
4
biopolymers swcnt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!