Hypericin is a photosensitizer with promising applications in photodynamic therapy (PDT) for cancer and infectious diseases treatments. Herein, we present a basic research study of L-diphenylalanine micro/nanotubes (FF-NTs) functionalized with hypericin. The system has special properties according to the hypericin concentration, with direct consequences on both morphological and photophysical behaviors. A clear dependence between the size of the tubes and the concentration of hypericin is revealed. The generation of reactive oxygen species (ROS) is found to be improved by ∼57% in the presence of FF-NTs, as indirectly measured from the absorbance profile of 1,3-diphenylisobenzofuran (DPBF). In addition, when hypericin appears conjugated with FF-NTs, the characteristic fluorescence lifetime is significantly boosted, demonstrating the role of FF-NTs to enhance the photophysical properties and stabilizing the fluorophore in excited states. Electron paramagnetic resonance allows the proposition of a mechanism for the generation of ROS. Molecular dynamics simulations bring new insights into the interaction between hypericin and peptide assemblies, suggesting the spatial organization of the fluorophore onto the surface of the supramolecular structures as a key element to improve the photophysical properties reported here.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3113655DOI Listing

Publication Analysis

Top Keywords

photophysical properties
12
functionalized hypericin
8
hypericin
7
structural photophysical
4
properties
4
properties peptide
4
peptide micro/nanotubes
4
micro/nanotubes functionalized
4
hypericin hypericin
4
hypericin photosensitizer
4

Similar Publications

Fluorescence characterization of halophilic archaeal C50 carotenoid-bacterioruberin extracts was investigated using UV/Vis and steady-state fluorescence spectrophotometry in solvents with different polarity. Different extracts showed maximum absorption and fluorescence wavelengths between 369-536 nm and 540-569 nm. Stokes' shifts varied between 50-79 nm depending on the solvent.

View Article and Find Full Text PDF

Stable Luminescent Diradicals: The Emergence and Potential Applications.

Angew Chem Int Ed Engl

January 2025

Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.

Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!