Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An essential task in a genomic analysis of a human disease is limiting the number of strongly associated genes when studying susceptibility to the disease. The goal of this study was to compare computational tools with and without feature selection for predicting osteoporosis outcome in Taiwanese women based on genetic factors such as single nucleotide polymorphisms (SNPs). To elucidate relationships between osteoporosis and SNPs in this population, three classification algorithms were applied: multilayer feedforward neural network (MFNN), naive Bayes, and logistic regression. A wrapper-based feature selection method was also used to identify a subset of major SNPs. Experimental results showed that the MFNN model with the wrapper-based approach was the best predictive model for inferring disease susceptibility based on the complex relationship between osteoporosis and SNPs in Taiwanese women. The findings suggest that patients and doctors can use the proposed tool to enhance decision making based on clinical factors such as SNP genotyping data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557627 | PMC |
http://dx.doi.org/10.1155/2013/850735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!